全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于GeC和WS2超晶格的第一性原理研究
First-Principles Study Based on GeC and WS2 Superlattices

DOI: 10.12677/japc.2024.132036, PP. 309-316

Keywords: 第一性原理,超晶格,堆叠方式,能带结构,态密度
The First Principle Thinking
, Superlattice, Stacking Method, Energy Band Structure, Density of States

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文通过第一性原理研究了GeC/WS2超晶格结构,利用密度泛函理论(DFT)和VASP软件包,详细分析了GeC和WS2单层材料的电子性质,并进一步探讨了GeC/WS2超晶格在六种不同堆叠方式下的原子结构和电子性质。计算结果显示六种堆叠结构均为II型能带排列的直接带隙半导体,带隙大小在0.55 eV到1.03 eV之间变化。这表明构建超晶格可以通过改变堆叠方式来调控超晶格的电子性质。此外,结合能和层间距的分析表明超晶格的物理稳定性与堆叠方式密切相关。这项研究不仅揭示了GeC/WS2超晶格在电子和光学性质调控方面的应用潜力,也为设计和制备具有特定功能的新型超晶格材料提供了理论基础。
In this paper, the GeC/WS2 superlattice structure is investigated by first principles, and the electronic properties of GeC and WS2 monolayers are analyzed in detail by using density-functional theory (DFT) and the VASP software package, and the atomic structure and electronic properties of the GeC/WS2 superlattice are further explored in six different stacking modes. The computational results show that all six stacked structures are direct bandgap semiconductors with type II energy band arrangement, and the bandgap size varies from 0.55 eV to 1.03 eV. This suggests that constructing superlattices can modulate the electronic properties of superlattices by changing the stacking method. In addition, the analysis of binding energy and layer spacing indicates that the physical stability of the superlattice is closely related to the stacking mode. This study not only reveals the potential application of GeC/WS2 superlattices in the modulation of electronic and optical properties, but also provides a theoretical basis for the design and preparation of novel superlattice materials with specific functions.

References

[1]  Tsu, R. and Esaki, L. (1973) Tunneling in a Finite Superlattice. Applied Physics Letters, 22, 562-564.
https://doi.org/10.1063/1.1654509
[2]  Harman, T.C., Taylor, P.J., Walsh, M.P., et al. (2002) Quantum Dot Superlattice Thermoelectric Materials and Devices. Science, 297, 2229-2232.
https://doi.org/10.1126/science.1072886
[3]  Yang, T., Zhao, Y.L., Li, W.P., et al. (2020) Ultrahigh-Strength and Ductile Superlattice Alloys with Nanoscale Disordered Interfaces. Science, 369, 427-432.
https://doi.org/10.1126/science.abb6830
[4]  Wu, Y.Y., Fan, R. and Yang, P.D. (2002) Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires. Nano Letters, 2, 83-86.
https://doi.org/10.1021/nl0156888
[5]  Whitlow, L.W. and Hirano, T. (1995) Superlattice applications to thermoelectricity. Journal of Applied Physics, 78, 5460-5466.
https://doi.org/10.1063/1.359661
[6]  Gnutzmann, U. and Clausecker, K. (1974) Theory of Direct Optical Transitions in an Optical Indirect Semiconductor with a Superlattice Structure. Applied Physics, 3, 9-14.
https://doi.org/10.1007/BF00892328
[7]  Sai-Halasz, G.A., Tsu, R. and Esaki, L. (1977) A New Semiconductor Superlattice. Applied Physics Letters, 30, 651-653.
https://doi.org/10.1063/1.89273
[8]  Tsybeskov, L., Hirschman, K.D., Duttagupta, S.P., et al. (1998) Nanocrystalline-Silicon Superlattice Produced by Controlled Recrystallization. Applied Physics Letters, 72, 43-45.
https://doi.org/10.1063/1.120640
[9]  Schmitt, J., Decher, G., Dressick, W.J., et al. (1997) Metal Nanoparticle/Polymer Superlattice Films: Fabrication and Control of Layer Structure. Advanced Materials, 9, 61-65.
https://doi.org/10.1002/adma.19970090114
[10]  (1983) Density Functional Theory.
[11]  Hafner, J. (2008) Ab-Initio Simulations of Materials Using VASP: Density-Functional Theory and Beyond. Journal of Computational Chemistry, 29, 2044-2078.
https://doi.org/10.1002/jcc.21057
[12]  Perdew, J.P., Tao, J.M., Staroverov, V.N., et al. (2004) Meta-Generalized Gradient Approximation: Explanation of a Realistic Nonempirical Density Functional. Journal of Chemical Physics, 120, 6898-6911.
https://doi.org/10.1063/1.1665298
[13]  Ziesche, P., Kurth, S. and Perdew, J.P. (1998) Density Functionals from LDA to GGA. Computational Materials Science, 11, 122-127.
https://doi.org/10.1016/S0927-0256(97)00206-1
[14]  Cutini, M., Maschio, L. and Ugliengo, P. (2020) Exfoliation Energy of Layered Materials by DFT-D: Beware of Dispersion! Journal of Chemical Theory and Computation, 16, 5244-52.
https://doi.org/10.1021/acs.jctc.0c00149
[15]  Kumar, V., Mishra, R.K., Kumar, P., et al. (2023) Electronic and Optical Properties of Nb/V-Doped WS2 Monolayer: A First-Principles Study. Luminescence, 38, 1215-1220.
https://doi.org/10.1002/bio.4342
[16]  Vu, T.V., Nguyen Thi Tuyet, A., Duy Phu, T., et al. (2020) Surface Functionalization of GeC Monolayer with F and Cl: Electronic and Optical Properties. Superlattices and Microstructures, 137, Article ID: 106359.
https://doi.org/10.1016/j.spmi.2019.106359
[17]  Ozcelik, V.O., Azadani, J.G., Yang, C., et al. (2016) Band Alignment of Two-Dimensional Semiconductors for Designing Heterostructures with Momentum Space Matching. Physical Review B, 94, Article 035125.
https://doi.org/10.1103/PhysRevB.94.035125
[18]  Xia, C., Xiong, W., Du, J., et al. (2018) Type-I Transition Metal Dichalcogenides Lateral Homojunctions: Layer Thickness and External Electric Field Effects. Small, 14, Article ID: 1800365.
https://doi.org/10.1002/smll.201800365

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133