The current trend of replacing a percentage of gasoline with ethanol has promoted the development of new processes for its production from lignocellulosic biomass. This work reports the production of ethanol from the Camalote grass (Paspalum fasciculatum Willd). The lignocellulosic biomass was subjected to acid hydrolysis at 125°C and 15 psi with H2SO4 concentrations at 5%, 10%, and 20%, obtaining an average of reducing sugars (pentoses and hexoses) from the hydrolyzed juice with 12.3%, 10%, and 17% Brix, respectively. The sugars were fermented using yeast of the Saccharomyces cerevisiae at 30°C for 48 hours. Finally, the ethanol was distilled at 78°C, and the average yields were obtained through analysis of variance with a 95% confidence level. The values indicate that there is a significant difference (p > 0.05), the Tukey study shows that all the % v/v averages are different from each other. For H2SO4 concentration at 5% (10.33 ± 2), H2SO4 at 10% (9.33 ± 1.8), and H2SO4 at 20% (6.33 ± 2). The acidity analysis for the ethanol obtained from each treatment gave a value of 1.8 mg/L of acetic acid in all cases.
References
[1]
Andersen, V.F., Anderson, J.E., Wallington, T.J., Mueller, S.A. and Nielsen O.J. (2010) Vapor Pressures of Alcohol-Gasoline Blends. Energy & Fuels, 24, 3647-3654. https://doi.org/10.1021/ef100254w
[2]
Castillo-Hernández, P., Mendoza-Domínguez, A. and Caballero-Mata, P. (2012) Analysis of Physicochemical Properties of Mexican Gasoline and Diesel Reformulated with Ethanol. Ingeniería Investigación y Tecnología, 13, 293-306. https://www.scielo.org.mx/pdf/iit/v13n3/v13n3a4.pdf https://doi.org/10.22201/fi.25940732e.2012.13n3.028
[3]
Álvarez Maciel, C. (2009) Biocombustibles: Desarrollo histórico-tecnológico, mercados actuales y comercio internacional. Economía Informa, 35, 63-89. http://www.economia.unam.mx/publicaciones/econinforma/pdfs/359/04carlosalvarez.pdf
[4]
National Ethanol Conference 2022. https://infosen.senado.gob.mx/sgsp/gaceta/65/1/2022-03-08-1/assets/documentos/SEN_ROCIO_ABREU_ARTINANO_CONFERENCIA_NACIONAL_ETANOL.pdf
[5]
Mohapatra, S., Mishra, S.S., Bhalla, P. and Thatoi, H. (2019) Engineering Grass Biomass for Sustainable and Enhanced Bioethanol Production. Planta, 250, 395-412. https://doi.org/10.1007/s00425-019-03218-y
[6]
Tejada Benítez, L., Tejada Tovar, C., Villabona Ortiz, A., Tarón Dunoyer, A., Alvear, M., Castillo C., Henao, D., Marimón, W. and Madariaga, N. (2010) Producción de bioetanol a partir de la fermentación alcohólica de jarabes glucosados derivados de cáscaras de naranja y piña. Revista Educación en Ingeniería, 5, 120-125.
[7]
Aiyejagbara, M.O., Aderemi, B.O., Ameh, A.O., Ishidi, E., Aiyejagbara. E.F., Ibeneme, U. and Olakunle, M.S. (2016) Production of Bioethanol from Elephant Grass (Pennisetum purpureum) Stem. International Journal of Innovative Mathematics, Statistics & Energy Policies, 4, 1-9. https://seahipaj.org/journals/engineering-technology-and-environment/ijimsep/vol-4-issue-1/
[8]
Cardona, E.M., Ríos, J.A., Peña, J.D. and Ríos, L.A. (2013) Pretratamiento Alcalino de Pasto Elefante (Pennisetum sp) y King Grass (Pennisetum hybridum) Cultivados en Colombia para la Producción de Bioetanol. Información Tecnológica, 24, 69-80.
[9]
Torres Robles, R., Cano López, M.N. and Aburto Anell, J. (2018) Obtención de bioetanol a partir de pasto kikuyo (Pennisetum clandestinum). Revista Iberoamericana de Ciencias, 5, 1-23. http://www.reibci.org/publicados/2018/jun/2700107.pdf
[10]
Raud, M. and Kikas, T. (2020) Perennial Grasses as a Substrate for Bioethanol Production. Environmental and Climate Technologies, 24, 32-40. https://doi.org/10.2478/rtuect-2020-0052
[11]
Antonopoulou, G. (2020) Designing Efficient Processes for Sustainable Bioethanol and Bio-Hydrogen Production from Grass Lawn Waste. Molecules, 25, Article 2889. https://doi.org/10.3390/molecules25122889
[12]
Yasuda, M., Takeo K., Nagai, H., Uto. T., Yui, T., Matsumoto, T., Ishii, Y. and Ohta, K. (2013) Enhancement of Ethanol Production from Napiergrass (Pennisetum purpureumSchumach) by a Low-Moisture Anhydrous Ammonia Pretreatment. Journal of Sustainable Bioenergy Systems, 3, 179-185. http://dx.doi.org/10.4236/jsbs.2013.33025
[13]
Chacón, J.C. and Gliessman, S.R. (1982) Use of the “Non-Weed” Concept in Traditional Tropical Agroecosystems of South-Eastern Mexico. Agro-Ecosystems, 8, 1-11. https://doi.org/10.1016/0304-3746(82)90010-5
[14]
Segal, L., Creely, J.J. and Martin, A.E. (1959) An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, 29, 786-794. https://doi.org/10.1177/004051755902901003
[15]
Ventura Ríos, J., Honorato Salazar, J.M., Hernández Garay, A., Aburto Anell, J.A., Vaquera Huerta, H. and Enríquez Quiroz, J.F. (2017) Composición química y rendimiento de biomasa de maralfalfa para producción de bioetanol de segunda generación. Revista Mexicana de Ciencias Agrícolas, 8, 215-221. https://cienciasagricolas.inifap.gob.mx/index.php/agricolas/article/view/85/81 https://doi.org/10.29312/remexca.v8i1.85
[16]
Rohaeti, E. and Irzaman, H. (2010) Production of Semiconductor Materials Silicon from Silica Rica Husk Waste as Alternative Silicon Sources. Materials Science and Technology, 1, 265-272. https://www.researchgate.net/publication/294086109
[17]
Melese, G., Tesfaye, G., Anteneh, B. and Tsige, G.-M. (2023) Extraction and Characterization of Cellulose and Microcrystalline Cellulose from Teff Straw and Evaluation of the Microcrystalline Cellulose as Tablet Excipient. Journal of Natural Fibers, 20, Article 2245565. https://doi.org/10.1080/15440478.2023.2245565
[18]
Guarnizo Franco, A., Martínez Yépes, P.N. and Valencia Sánchez, H.A. (2009) Pretratamientos de la celulosa y biomasa para la sacarificación. Scientia et Technica, 15, 284-289. https://www.redalyc.org/articulo.oa?id=84916714053
[19]
Vital López, P. and Larralde Corona, C.P. (2016) Respuestas metabólicas al estrés de levaduras de importancia industrial. Investigación y Ciencia, 24, 86-91. https://doi.org/10.33064/iycuaa2016672789
[20]
Uçar, G. and Balaban, M. (2003) Hydrolysis of Polysaccharides with 77% Sulfuric Acid for Quantitative Saccharification. Turkish Journal of Agriculture and Forestry, 27, 361-365. https://journals.tubitak.gov.tr/agriculture/vol27/iss6/6
[21]
Cuevas-García. R. and Nava Bravo, I. (2023) Producción de combustibles renovables. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 16, 1e-50e. https://doi.org/10.22201/ceiich.24485691e.2023.30.69635
[22]
Gracida Rodríguez, J.N. and Perez-Diaz, B. (2014) Factores previos involucrados en la producción de bioetanol, aspectos a considerar. Revista Internacional de Contaminación Ambiental, 30, 213-227. https://www.revistascca.unam.mx/rica/index.php/rica/issue/view/3643