全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于能量场的海马定位与导航模型研究
Research on Hippocampal Positioning and Navigation Model Based on Energy Fields

DOI: 10.12677/isl.2024.82017, PP. 137-145

Keywords: 认知地图,位置细胞,能量编码,定位与导航
Cognitive Map
, Place Cell, Energy Coding, Localization and Navigation

Full-Text   Cite this paper   Add to My Lib

Abstract:

海马体的位置细胞是大脑内部的空间定位系统的重要一环,为动物提供外部环境的认知地图。为实现认知地图构建及智能导航,本研究在Reduced Traub-Miles (RTM)模型的基础上,提出了一种基于神经能量编码的海马体位置细胞神经网络模型,基于位置细胞群的发放功率构建能量场,利用能量场梯度解决定位和导航任务。研究表明,模型能够有效地构建并更新认知地图,实现寻路任务,验证了位置细胞和突触在空间记忆中的重要性,证明了能量编码对认知活动的研究是有效的,为了解空间记忆的神经动力学机制提供了理论依据。
The place cells in the hippocampus constitute a vital component of the brain’s internal spatial positioning system, engaging in the construction of cognitive maps of the external environment for animals. This study introduces a place cell neural network model based on the Reduced Traub-Miles (RTM) model, employing a neural energy coding approach. It quantitatively describes the attenuation pattern of place cell cluster firing power, constructing an energy field model. The model utilizes energy field gradients to resolve positioning and navigation tasks. The result shows that the model can effectively construct and update the cognitive map to realize the way finding task. It verifies the importance of place cells and synapses in spatial memory, proves that energy coding is effective for the study of cognitive activities, and provides a theoretical basis for understanding the neurodynamic mechanism of spatial memory.

References

[1]  Tolman, E.C. (1948) Cognitive Maps in Rats and Men. Psychological Review, 55, 189-208.
https://doi.org/10.1037/h0061626
[2]  O’Keefe, J. and Dostrovsky, J. (1971) The Hippocampus as a Spatial Map. Preliminary Evidence from Unit Activity in the Freely-Moving Rat. Brain Research, 34, 171-175.
https://doi.org/10.1016/0006-8993(71)90358-1
[3]  O’Keefe, J. and Nadel, L. (1978) The Hippocampus as a Cognitive Map. Clarendon Press.
[4]  Mehta, M.R. (2015) From Synaptic Plasticity to Spatial Maps and Sequence Learning. Hippocampus, 25, 756-762.
https://doi.org/10.1002/hipo.22472
[5]  Alme, C.B., Miao, C., Jezek, K., Treves, A., Moser, E.I. and Moser, M. (2014) Place Cells in the Hippocampus: Eleven Maps for Eleven Rooms. Proceedings of the National Academy of Sciences, 111, 18428-18435.
https://doi.org/10.1073/pnas.1421056111
[6]  G?nner, L., Vitay, J. and Hamker, F.H. (2017) Predictive Place-Cell Sequences for Goal-Finding Emerge from Goal Memory and the Cognitive Map: A Computational Model. Frontiers in Computational Neuroscience, 11, Article 84.
https://doi.org/10.3389/fncom.2017.00084
[7]  O’Keefe, J. (1976) Place Units in the Hippocampus of the Freely Moving Rat. Experimental Neurology, 51, 78-109.
https://doi.org/10.1016/0014-4886(76)90055-8
[8]  Tsao, A., Moser, M. and Moser, E.I. (2013) Traces of Experience in the Lateral Entorhinal Cortex. Current Biology, 23, 399-405.
https://doi.org/10.1016/j.cub.2013.01.036
[9]  Muller, R.U., Kubie, J.L. and Saypoff, R. (1991) The Hippocampus as a Cognitive Graph (Abridged Version). Hippocampus, 1, 243-246.
https://doi.org/10.1002/hipo.450010306
[10]  Muller, R.U., Stead, M. and Pach, J. (1996) The Hippocampus as a Cognitive Graph. The Journal of General Physiology, 107, 663-694.
https://doi.org/10.1085/jgp.107.6.663
[11]  Moser, E.I., Kropff, E. and Moser, M. (2008) Place Cells, Grid Cells, and the Brain’s Spatial Representation System. Annual Review of Neuroscience, 31, 69-89.
https://doi.org/10.1146/annurev.neuro.31.061307.090723
[12]  Raichle, M.E. and Gusnard, D.A. (2002) Appraising the Brain’s Energy Budget. Proceedings of the National Academy of Sciences, 99, 10237-10239.
https://doi.org/10.1073/pnas.172399499
[13]  Wang, R., Wang, Y., Xu, X., Li, Y. and Pan, X. (2023) Brain Works Principle Followed by Neural Information Processing: A Review of Novel Brain Theory. Artificial Intelligence Review, 56, 285-350.
https://doi.org/10.1007/s10462-023-10520-5
[14]  Wilson, M.A. and McNaughton, B.L. (1993) Dynamics of the Hippocampal Ensemble Code for Space. Science, 261, 1055-1058.
https://doi.org/10.1126/science.8351520
[15]  Wang, Z. and Wang, R. (2014) Energy Distribution Property and Energy Coding of a Structural Neural Network. Frontiers in Computational Neuroscience, 8, 8-14.
https://doi.org/10.3389/fncom.2014.00014
[16]  Traub, R.D. and Whittington M. (2010) Cortical Oscillations in Health and Disease. Oxford University Press.
[17]  Stringer, S.M., Rolls, E.T., Trappenberg, T.P. and de Araujo, I.E.T. (2002) Self-Organizing Continuous Attractor Networks and Path Integration: Two-Dimensional Models of Place Cells. Network: Computation in Neural Systems, 13, 429-446.
https://doi.org/10.1088/0954-898x_13_4_301
[18]  Hopfield, J.J. (2009) Neurodynamics of Mental Exploration. Proceedings of the National Academy of Sciences, 107, 1648-1653.
https://doi.org/10.1073/pnas.0913991107
[19]  Wang, Y., Wang, R. and Zhu, Y. (2016) Optimal Path-Finding through Mental Exploration Based on Neural Energy Field Gradients. Cognitive Neurodynamics, 11, 99-111.
https://doi.org/10.1007/s11571-016-9412-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133