全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高压天然气管线站场关键位置壁厚影响因素及监测研究
The Study on Influencing Factors and Monitoring of Wall Thickness at Key Locations of High-Pressure Natural Gas Pipeline Station

DOI: 10.12677/jogt.2024.462028, PP. 218-230

Keywords: 长输天然气,影响因素,检测位置,监测周期,受力区域
Long-Distance Natural Gas
, Influencing Factors, Detection Position, Monitoring Period, Stressed Area

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,天然气管道的安全平稳运行成为整个社会关注的焦点问题。长输天然气管道大多为大口径、高压力管道,故其安运行全显得尤其关键。在高压天然气管输行业中,关键位置(弯头和三通)的壁厚由于气体的长期冲蚀会减薄,继而产生严重后果。故其壁厚监测是一项重点工作,但关键位置的影响因素、检测范围及监测的周期在行业内均没有相关的标准。为了研究上述内容,笔者应用Fluent仿真软件建立模型,然后结合现场数据进行模型修正模型,利用模型对关键位置的影响因素逐一进行分析,并选取较重要的影响因素;对不同管径、曲径比的检测位置受力区域进行研究并总结规律,并以此为依据确定检测范围及监测周期。以上研究成果可给现场运行人员日常工作提供参考,继而保证长输天然气管道安全平稳运行。
In recent years, the safe and stable operation of natural gas pipelines has become the focus of the whole society. Most long-distance natural gas pipelines are large-diameter and high-pressure pipelines, so their safe operation is particularly critical. In the high-pressure natural gas transmission industry, the wall thickness of key positions (elbows and tees) will be reduced due to the long-term erosion of gas, which will lead to serious consequences. Therefore, its wall thickness monitoring is a key work, but there are no relevant standards in the industry for the influencing factors, detection scope and monitoring period of key positions. In order to study the above contents, the author uses Fluent simulation software to build a model, and then combines the field data to modify the model. The model is used to analyze the influencing factors of key positions one by one, and select the more important influencing factors; the stress area of different pipe diameters and curvature ratios is studied and summarized, and the detection range and monitoring period are determined based on this. The above research results can provide reference for the daily work of field operators, and then ensure the safe and stable operation of long-distance natural gas pipelines.

References

[1]  杨德成, 朱宏武. 天然气携砂气固两相流在弯管处冲蚀磨损分析[J]. 石油机械, 2019, 47(10): 125-132.
[2]  宋晓琴, 刘玲, 骆宋洋, 等. 天然气集输管道90?弯头冲蚀磨损规律研究[J]. 润滑与密封, 2018, 43(8): 62-68.
[3]  季楚凌. 弯管仿生耐磨方法数值模拟[J]. 中南大学学报: 自然科学版, 2016, 47(10): 3582-3589.
[4]  郑云萍, 王欢欢, 易昊林, 等. 天然气管道弯头冲蚀与防护仿真研究[J]. 计算机仿真, 2015, 32(8): 427-430.
[5]  付林. 油煤浆输送管道弯头部位冲击磨损预测与壁厚监测[D]: [硕士学位论文]. 天津: 河北工业大学, 2009.
[6]  黄坤, 邓平, 李岳鹏, 等. 气固两相流90°弯管抗冲蚀结构优化[J]. 中国安全生产科学技术, 2019, 15(8): 94-100.
[7]  黄勇, 殷琨, 朱丽红, 等. 反循环钻进中水龙头弯管磨损数值模拟[J]. 中南大学学报(自然科学版), 2013, 44(5): 2053-2059.
[8]  梁光川, 聂畅, 刘奇, 等. 基于FLUENT的输油管道弯头冲蚀分析[J]. 腐蚀与防护, 2013, 34(9): 822-824, 830.
[9]  曾涌捷. 天然气管道弯头冲蚀失效机理研究[J]. 石油和化工设备, 2011, 14(2): 44-46.
[10]  袁少朋, 郭红, 石明辉. 基于FLUENT的径向滑动轴承紊流润滑特性研究[J]. 润滑与密封, 2022, 47(9): 56-62.
[11]  董庆伟, 刘理想, 李阁强. 双圆弧斜齿齿轮泵泄漏研究及最佳间隙设计[J]. 流体机械, 2022, 50(3): 60-65, 87.
[12]  陈作炳, 唐仁洪, 梅文辉, 等. 带气腔结构的平面静压气体轴承特性分析[J]. 机械设计, 2022, 39(1): 59-64.
[13]  王超, 于光临, 甘新海, 等. 直流式旋风分离器参数优化仿真与试验[J]. 液压与气动, 2022, 46(12): 129-134.
[14]  陈松, 张波, 黄金, 等. 考虑挤压和壁面滑移作用的磁流变液流动分析[J]. 机械设计与制造, 2022(6): 100-103.
[15]  兰夏燕, 万舟, 李进, 等. ANSYS Workbench软件中两种螺栓连接仿真方法的研究[J]. 机械制造, 2017, 55(6): 59-61, 65.
[16]  谢志江, 孙玉, 李诚, 等. 基于ANSYS Workbench的搬运机械手结构优化设计[J]. 机械与电子, 2010(1): 65-67.
[17]  文怀兴, 崔康. 基于ANSYS Workbench的高速电主轴静动态性能分析[J]. 组合机床与自动化加工技术, 2012(12): 49-52.
[18]  Shi, J., Zhang, W., Guo, S., et al. (2022) Numerical Modelling of Blasting Dust Concentration and Particle Size Distribution during Tunnel Construction by Drilling and Blasting. Metals, 12, Article 547.
https://doi.org/10.3390/met12040547
[19]  曲泉铀, 何宏舟, 张军, 等. 浮摆式波能发电装置浮体系统的数值模拟[J]. 水力发电学报, 2014, 33(5): 221-227.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133