全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

双面框架式板型声学超材料的低频隔声特性研究
Study on Low Frequency Sound Insulation Characteristics of Double-Sided Framed Plate Acoustic Metamaterials

DOI: 10.12677/app.2024.147058, PP. 537-549

Keywords: 板型声学超材料,局域共振,低频,隔声,带隙
Plate-Type Acoustic Metamaterial
, Locally Resonant, Low-Frequency, Sound Insulation, Band Gap

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据经典的质量定律,传统的轻量化结构在低频时通常无法提供良好的隔声性能。针对低频声波的控制,本文提出了一种具有双面框架的板型声学超材料。利用有限元方法计算了其声传输损失和色散关系,并结合振动模态详细分析了该超材料结构形成低频隔声的物理机理;研究了超材料结构的几何参数对其声传输损失的影响。结果表明:所设计的超材料结构能够实现低频宽带隔声效果,隔声峰频率主要受谐振器的固有频率的影响;隔声谷由谐振器和基体板的质量比决定。框架的对称分布,可以实现双峰耦合,拓宽隔声峰频带。本文提出的框架式板型声学超材料为低频宽带降噪领域的声学超材料结构的设计提供了一定的参考价值。
According to the classical mass law, conventional lightweight structures usually do not provide good sound insulation at low frequencies. A plate-type acoustic metamaterial with double-sided frames was proposed for low-frequency sound wave control. The proposed metamaterial sound transmission loss and dispersion curve were calculated using the finite element method. The physical mechanism of sound insulation formation was analyzed using vibration modes. The influence of the geometrical parameters of the metamaterial structure on the sound insulation performance was explored. The results show that the designed metamaterial structure can achieve low-frequency broadband sound insulation. The sound insulation peak frequency is mainly affected by the natural frequency of the resonator mass, and the sound insulation dip is determined by the mass ratio of the resonator to the thin plate. The symmetric distribution of the frame can achieve double-peak coupling and broaden the acoustic insulation peaks. The framed plate acoustic metamaterial proposed in this paper provides some reference value for the design of acoustic metamaterial in the field of low-frequency broadband noise reduction.

References

[1]  Fahy, F.J. and Gardonio, P. (2007) Sound and Structural Vibration: Radiation, Transmission and Response. Academic Press.
https://doi.org/10.3397/1.2741307
[2]  Huang, T.Y., Shen, C. and Jing, Y. (2016) Membrane-and Plate-Type Acoustic Metamaterials. The Journal of the Acoustical Society of America, 139, 3240-3250.
https://doi.org/10.1121/1.4950751
[3]  闫文惠, 刘禧萱, 方添寅, 等. 大尺寸非对称薄膜型声学超材料的低频隔声特性研究[J]. 人工晶体学报, 2023, 52(8): 1441-1450.
[4]  Yang, M. and Sheng, P. (2017) Sound Absorption Structures: From Porous Media to Acoustic Metamaterials. Annual Review of Materials Research, 47, 83-114.
https://doi.org/10.1146/annurev-matsci-070616-124032
[5]  Liu, Z., Zhang, X., Mao, Y., et al. (2000) Locally Resonant Sonic Materials. Science, 289, 1734-1736.
https://doi.org/10.1126/science.289.5485.1734
[6]  Wang, G., Wen, X., Wen, J., et al. (2004) Two-Dimensional Locally Resonant Phononic Crystals with Binary Structures. Physical Review Letters, 93, Article 154302.
https://doi.org/10.1103/PhysRevLett.93.154302
[7]  Zhou, X., Xu, Y., Liu, Y., et al. (2018) Extending and Lowering Band Gaps by Multilayered Locally Resonant Phononic Crystals. Applied Acoustics, 133, 97-106.
https://doi.org/10.1016/j.apacoust.2017.12.012
[8]  Yang, Z., Mei, J., Yang, M., et al. (2008) Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass. Physical Review Letters, 101, Article 204301.
https://doi.org/10.1103/PhysRevLett.101.204301
[9]  Ma, F., Huang, M. and Wu, J.H. (2017) Ultrathin Lightweight Plate-Type Acoustic Metamaterials with Positive Lumped Coupling Resonant. Journal of Applied Physics, 121, Article 015102.
https://doi.org/10.1063/1.4972839
[10]  肖勇, 王洋, 赵宏刚, 等. 面向减振降噪应用的声学超构材料研究进展[J]. 机械工程科学杂志, 2023, 59(19): 277-298.
[11]  Oudich, M., Zhou, X., Badreddine and Assouar, M. (2014) General Analytical Approach for Sound Transmission Loss Analysis Through a Thick Metamaterial Plate. Journal of Applied Physics, 116, Article 193509.
https://doi.org/10.1063/1.4901997
[12]  Pennec, Y., Djafari-Rouhani, B., Larabi, H., et al. (2008) Low-Frequency Gaps in a Phononic Crystal Constituted of Cylindrical Dots Deposited on a Thin Homogeneous Plate. Physical Review B, 78, Article 104105.
https://doi.org/10.1103/PhysRevB.78.104105
[13]  Oudich, M., Li, Y., Assouar, B.M., et al. (2010) A Sonic Band Gap Based on the Locally Resonant Phononic Plates with Stubs. New Journal of Physics, 12, Article 083049.
https://doi.org/10.1088/1367-2630/12/8/083049
[14]  Hsu, J.C. (2011) Local Resonances-Induced Low-Frequency Band Gaps in Two-Dimensional Phononic Crystal Slabs with Periodic Stepped Resonators. Journal of Physics D: Applied Physics, 44, Article 055401.
https://doi.org/10.1088/0022-3727/44/5/055401
[15]  Badreddine, Assouar, M. and Oudich, M. (2012) Enlargement of a Locally Resonant Sonic Band Gap by Using Double-Sides Stubbed Phononic Plates. Applied Physics Letters, 100, Article 123506.
https://doi.org/10.1063/1.3696050
[16]  Badreddine, Assouar, M., Senesi, M., Oudich, M., et al. (2012) Broadband Plate-Type Acoustic Metamaterial for Low-Frequency Sound Attenuation. Applied Physics Letters, 101, Article 173505.
https://doi.org/10.1063/1.4764072
[17]  Wang, P., Chen, T.N., Yu, K.P., et al. (2013) Lamb Wave Band Gaps in a Double-Sided Phononic Plate. Journal of Applied Physics, 113, Article 053509.
https://doi.org/10.1063/1.4790301
[18]  Li, Y., Chen, T., Wang, X., et al. (2015) Enlargement of Locally Resonant Sonic Band Gap by Using Composite Plate-Type Acoustic Metamaterial. Physics Letters A, 379, 412-416.
https://doi.org/10.1016/j.physleta.2014.11.028
[19]  Ang, L.Y.L., Koh, Y.K. and Lee, H.P. (2018) Plate-Type Acoustic Metamaterial with Cavities Coupled via an Orifice for Enhanced Sound Transmission Loss. Applied Physics Letters, 112, Article 051903.
https://doi.org/10.1063/1.5019602
[20]  Ang, L.Y.L., Koh, Y.K. and Lee, H.P. (2019) Plate-Type Acoustic Metamaterials: Evaluation of a Large-Scale Design Adopting Modularity for Customizable Acoustical Performance. Applied Acoustics, 149, 156-170.
https://doi.org/10.1016/j.apacoust.2019.01.027
[21]  Zhou, X., Wang, L., Qin, L., et al. (2020) Improving Sound Insulation in Low Frequencies by Multiple Band-Gaps in Plate-Type Acoustic Metamaterials. Journal of Physics and Chemistry of Solids, 146, Article 109606.
https://doi.org/10.1016/j.jpcs.2020.109606
[22]  Wang, S., Zhang, X., Li, F., et al. (2022) Sound Transmission Loss of a Novel Acoustic Metamaterial Sandwich Panel: Theory and Experiment. Applied Acoustics, 199, Article 109035.
https://doi.org/10.1016/j.apacoust.2022.109035
[23]  Van Belle, L., Claeys, C., Deckers, E., et al. (2019) The Impact of Damping on the Sound Transmission Loss of Locally Resonant Metamaterial Plates. Journal of Sound and Vibration, 461, Article 114909.
https://doi.org/10.1016/j.jsv.2019.114909
[24]  Song, Y., Feng, L., Wen, J., et al. (2015) Reduction of the Sound Transmission of a Periodic Sandwich Plate Using the Stop Band Concept. Composite Structures, 128, 428-436.
https://doi.org/10.1016/j.compstruct.2015.02.053
[25]  Sal-Anglada, G., Yago, D., Cante, J., et al. (2024) Sound Transmission Loss Enhancement through Triple-Peak Coupled Resonances Acoustic Metamaterials. International Journal of Mechanical Sciences, 266, Article 108951.
https://doi.org/10.1016/j.ijmecsci.2023.108951
[26]  王亚琴, 徐晓美, 萍林. 薄膜型声学超材料的结构设计与隔声特性[J]. 应用声学, 2022, 41(6): 875-883.
[27]  Liu, X.N., Hu, G.K., Huang, G.L., et al. (2011) An Elastic Metamaterial with Simultaneously Negative Mass Density and Bulk Modulus. Applied Physics Letters, 98, Article 251907.
https://doi.org/10.1063/1.3597651
[28]  Lee, S.H. and Wright, O.B. (2016) Origin of Negative Density and Modulus in Acoustic Metamaterials. Physical Review B, 93, Article 024302.
https://doi.org/10.1103/PhysRevB.93.024302
[29]  Xiao, Y., Wen, J. and Wen, X. (2012) Sound Transmission Loss of Metamaterial-Based Thin Plates with Multiple Subwavelength Arrays of Attached Resonators. Journal of Sound and Vibration, 331, 5408-5423.
https://doi.org/10.1016/j.jsv.2012.07.016
[30]  何晓栋, 肖勇, 温激鸿. 晶格常数对声学超材料板隔声特性的影响研究[J]. 噪声与振动控制, 2018, 38(A01): 51-55.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133