Lawsoniainermis is a hairless plant growing in various regions of North Africa, the Indian subcontinent, and the Middle East. It possesses many medicinal attributes, including curative properties against infectious dermatoses. This study was carried out to evaluate the phytochemical profile of the crude ethanolic extract of the plant leaves and its fractions as well as their antimicrobial activities. The phytochemical profile was performed using high-performance thin-layer chromatography (HPTLC), gas chromatography-mass spectrometry (GC-MS), and high-performance liquid chromatography (HPLC). Additionally, the phenolic and flavonoid contents were determined using the Folin-Ciocalteu spectrophotometric and the aluminum trichloride methods. Antimicrobial activity was tested using disc diffusion and microdilution methods. The presence of flavonoids, tannins, sterols, and triterpenes was revealed. GC-MS detected twelve compounds main compounds consisting of saturated and unsaturated fatty acids and phenolic and terpenoid compounds among twenty-seven components. HPLC also detected high contents of phenolic acids and flavonoids. The most abundant triterpene and sterols were ursolic acid (around 43.14 g/100g DW, 13.9 g/100g dry weight (DW), and 0.68 g/100g DW) in the crude ethanolic extract of leaves (FeLi), hexane fraction (FHLi) and dichloromethane fraction (FDLi), respectively and, β-sitosterol in FeLi (56.7 mg/100g DW), FHLi (10.55 g/100g DW), FDLi (106.1 mg/100g DW) and butanol fraction (FBLi) (357.4 mg/100g DW). Among the flavonoids, rutin = 3.24 g/100g and quercetin = 0.63 g/100g in the ethanolic extract, rutin = 15.73 g/100g in the dichloromethane fraction, and rutin = 0.23 g/100g) in the aqueous fraction; and among phenolic compounds, caffeic acid (37.65 g/100g DW) and vanillic acid (22.70 g/100g DW) were the most important in the ethyl acetate fraction (FAeLi). All organic fractions exhibited interesting antibacterial and antifungal activities against the tested strains, with the best activity recorded with the dichloromethane and ethyl acetate fractions. The leaf extracts’ phytochemical profile and antimicrobial activity support the use of Lawsoniainermis against infectious skin diseases.
References
[1]
Manso, T., Lores, M. and de Miguel, T. (2021) Antimicrobial Activity of Polyphenols and Natural Polyphenolic Extracts on Clinical Isolates. Antibiotics, 11, Article 46. https://doi.org/10.3390/antibiotics11010046
[2]
WHO (2019) New Report Calls for Urgent Action to Avert Antimicrobial Resistance Crisis.
[3]
Muthuraman, S. and Ravichandran, S. (2016) Examining the Anti-Candidal Activity of 10 Selected Indian Herbs and Investigating the Effect of Lawsoniainermis Extract on Germ Tube Formation, Protease, Phospholipase, and Aspartate Dehydrogenase Enzyme Activity in Candida Albicans. IndianJournalofPharmacology, 48, 47-52. https://doi.org/10.4103/0253-7613.174523
[4]
Youl, O., Moné-Bassavé, B.R.H., Yougbaré, S., Yaro, B., Traoré, T.K., Boly, R., etal. (2023) Phytochemical Screening, Polyphenol and Flavonoid Contents, and Antioxidant and Antimicrobial Activities of Opiliaamentacea Roxb. (Opiliaceae) Extracts. AppliedBiosciences, 2, 493-512. https://doi.org/10.3390/applbiosci2030031
[5]
Ibrahim, S.M.S., Rasool, C.S. and Al-Asady, A.A. (2021) Antimicrobial Activity of Crude Henna Extract against Gram-Positive Bacteria. IraqMedicalJournal, 5, 18-26. https://doi.org/10.22317/imj.v5i3.1036
[6]
Álvarez-Martínez, F.J., Barrajón-Catalán, E., Encinar, J.A., Rodríguez-Díaz, J.C. and Micol, V. (2020) Antimicrobial Capacity of Plant Polyphenols against Gram-Positive Bacteria: A Comprehensive Review. CurrentMedicinalChemistry, 27, 2576-2606. https://doi.org/10.2174/0929867325666181008115650
[7]
Dahake, P.R. and Kamble, S.I. (2015) Study on Antimicrobial Potential and Preliminary Phytochemical Screening of Lawsoniainermis Linn. InternationalJournalofPharmaceuticalSciencesandResearch, 6, 3344-3350.
[8]
Leonard, A.O., Agih, I.A., Akeem, A.A. and Benjamin, K.N. (2022) Phytochemical Screening and Antioxidant Activities of the Bark of Lawsoniainermis (Henna) Grown in Dekina, Kogi, Nigeria. UMYUScientifica, 1, 274-279. https://doi.org/10.56919/usci.1122.035
[9]
Dhaouadi, K., Meliti, W., Dallali, S., Belkhir, M., Ouerghemmi, S., Sebei, H., etal. (2015) Commercial Lawsoniainermis L. Dried Leaves and Processed Powder: Phytochemical Composition, Antioxidant, Antibacterial, and Allelopathic Activities. IndustrialCropsandProducts, 77, 544-552. https://doi.org/10.1016/j.indcrop.2015.09.037
[10]
Al-Snafi, A.E. (2019) A Review on Lawsoniainermis: A Potential Medicinal Plant. InternationalJournalofCurrentPharmaceuticalResearch, 11, 1-13. https://doi.org/10.22159/ijcpr.2019v11i5.35695
[11]
Rahmoun, N., Boucherit-Otmani, Z., Boucherit, K., Benabdallah, M. and Choukchou-Braham, N. (2012) Antifungal Activity of the Algerian Lawsoniainermis (Henna). PharmaceuticalBiology, 51, 131-135. https://doi.org/10.3109/13880209.2012.715166
[12]
Ziaei, A., Sahranavard, S., Gharagozlou, M.J. and Faizi, M. (2016) Preliminary Investigation of the Effects of Topical Mixture of Lawsoniainermis L. and Ricinuscommunis L. Leaves Extract in Treatment of Osteoarthritis Using MIA Model in Rats. DARUJournalofPharmaceuticalSciences, 24, Article No. 12. https://doi.org/10.1186/s40199-016-0152-y
[13]
Debapriya, D., Dipu, S., Rajat, B., Suchita, S., Bidisha, M., Sayak, G. etal. (2020) Insights into the Phytochemical Potential of Lawsoniainermis L. for Future Small Molecule Based Therapeutic Applications. InternationalResearchJournals, 11, 1-7.
Madina, B. (2020) Etude phytochimique et évaluation biologique des extraits aqueux de Lawsonia inermis et de Juglans regia. Université Frères Mentouri Constantine 1.
[16]
Ollo, Y., Sibidou, Y., Palpouguini, L., Boubacar, Y., Christian, M.T., Halidou, T., etal. (2021) Preliminary Screening of the Antimicrobial Activity of Nine Medicinal Plant Species from Burkina Faso. JournalofMedicinalPlantsResearch, 15, 522-530. https://doi.org/10.5897/jmpr2021.7106
[17]
Koala, M., Kaboré, B., Rimwagna Ouedraogo, C.W., Belemnaba, L., Nitiema, M., Compaoré, S. etal. (2023) High-Performance Thin-Layer Chromatography Phyto-Chemical Profiling, Antioxidant Activities, and Acute Toxicity of Leaves Extracts of Lanneavelutina A. Rich. JournalofMedicinalandChemicalSciences, 6, 410-423.
[18]
Koala, M., Ramde-Tiendrebeogo, A., Ouedraogo, N., Ilboudo, S., Kaboré, B., Kini, F.B., etal. (2021) HPTLC Phytochemical Screening and Hydrophilic Antioxidant Activities of Apiumgraveolens L., Cleomegynandra L., and Hibiscussabdariffa L. Used for Diabetes Management. AmericanJournalofAnalyticalChemistry, 12, 15-28. https://doi.org/10.4236/ajac.2021.121002
[19]
Owolabi, T., Osaretin, D. and Eyinayan, B. (2022) Bioactive Composition and TLC Profile Data on Pax Herbal Malatreat Tea. DrugAnalyticalResearch, 6, 35-39. https://doi.org/10.22456/2527-2616.125038
[20]
Jagetia, G.C. (2018) The Phytochemical and Thin Layer Chromatograhy Profile of Ethnomedcinal Plant Helicia Nilagirica (Bedd). InternationalJournalofPharmacognosy&ChineseMedicine, 2, Article 000131. https://doi.org/10.23880/ipcm-16000131
[21]
Sombié, E.N., Somda, D.G., Konaté, S., Youl, O., Traoré, T.K., N’do, J.Y-P., etal. (2023) HPLC Analysis and Protective Effect of Fractions from Ethanolic Extract of Calotropisprocera (Ait.) R. Br Root Bark against Diethylnitrosamine Induced-Hepatic Damage in Wistar Rats. TropicalJournalofNaturalProductResearch, 7, 3462-3469. https://doi.org/10.26538/tjnpr/v7i7.26
[22]
Ponce, A.G., Fritz, R., Del Valle, C. and Roura, S.I. (2003) Antimicrobial Activity of Essential Oils on the Native Microflora of Organic Swiss Chard. LWT-FoodScienceandTechnology, 36, 679-684. https://doi.org/10.1016/s0023-6438(03)00088-4
[23]
Kuete, V. (2010) Potential of Cameroonian Plants and Derived Products against Microbial Infections: A Review. PlantaMedica, 76, 1479-1491. https://doi.org/10.1055/s-0030-1250027
[24]
Marmonier, A. (1990) Introduction aux techniques d’étude des antibiotiques. In: Denis, F., Ploy, M.-C., Martin, C., Bingen, P.E. and Quentin, R., Eds., BactériologieMédicale, TechniqueUsuelles, Elsevier, 227-236.
[25]
Abdulfatai, A. and Ayotunde, O.O. (2022) Lawsoniainermis Linn; Review of Plant with Both Industrial and Medicinal Properties. MediaKedokteranHewan, 33, 105-130. https://doi.org/10.20473/mkh.v33i2.2022.105-130
[26]
Elansary, H.O., Szopa, A., Kubica, P., Ekiert, H., Al-Mana, F.A. and Al-Yafrsi, M.A. (2020) Antioxidant and Biological Activities of Acaciasaligna and Lawsoniainermis Natural Populations. Plants, 9, Article 908. https://doi.org/10.3390/plants9070908
[27]
Meutia, N., Putra, B. and Jusuf, N.K. (2021) Antifungal Activity of Henna Leaf Extract (Lawsoniainermis Linn.) against Inhibition of Trichophytonrubrum Fungal Growth Cause Tinea Unguium. JurnalBuletinFarmatera, 6, 72-79.
[28]
Kouadri, F. (2018) Invitro Antibacterial and Antifungal Activities of the Saudi Lawsoniainermis Extracts against Some Nosocomial Infection Pathogens. JournalofPureandAppliedMicrobiology, 12, 281-286. https://doi.org/10.22207/jpam.12.1.33
[29]
Górniak, I., Bartoszewski, R. and Króliczewski, J. (2018) Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. PhytochemistryReviews, 18, 241-272. https://doi.org/10.1007/s11101-018-9591-z
[30]
Gallo, F.R., Multari, G., Palazzino, G., Pagliuca, G., Zadeh, S.M.M., Biapa, P.C.N., etal. (2014) Henna through the Centuries: A Quick HPTLC Analysis Proposal to Check Henna Identity. RevistaBrasileiradeFarmacognosia, 24, 133-140. https://doi.org/10.1016/j.bjp.2014.03.008
[31]
Abdelrahman, A.M., Kheiralla, K.E.K., Ibrahim, N.Y., Elegail, A., Yousif, M.A. and Ahmed, E.M. (2020) Antimycobacterial Activity and Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Henna (Lawsoniainermis) Leaves Extract. ArabianJournalofMedicinal&AromaticPlants, 7, 1-9.
[32]
Hassan Wagini, N. (2014) Phytochemical Analysis of Nigerian and Egyptian Henna (Lawsoniainermis L.) Leaves Using TLC, FTIR and GCMS. Plant, 2, 27-32. https://doi.org/10.11648/j.plant.20140203.11
[33]
Dev, S.N.C. and Khan, M.W. (2016) GC-MS Analysis of Phytochemicals of Methanolic Extract of Leaves of Lawsoniainermis LINN. IndianJournalofMedicialResearchandPharmaceuticalSciences, 3, 77-82.
[34]
Bhat, M.P., Rudrappa, M., Hugar, A., Gunagambhire, P.V., Suresh Kumar, R., Nayaka, S., etal. (2023) In-vitro Investigation on the Biological Activities of Squalene Derived from the Soil Fungus Talaromycespinophilus. Heliyon, 9, e21461. https://doi.org/10.1016/j.heliyon.2023.e21461
[35]
Kim, S. and Karadeniz, F. (2012) Biological Importance and Applications of Squalene and Squalane. AdvancesinFoodandNutritionResearch, 65, 223-233. https://doi.org/10.1016/b978-0-12-416003-3.00014-7
[36]
Huang, Z., Lin, Y. and Fang, J. (2009) Biological and Pharmacological Activities of Squalene and Related Compounds: Potential Uses in Cosmetic Dermatology. Molecules, 14, 540-554. https://doi.org/10.3390/molecules14010540
[37]
Siswadi, S. and Saragih, G.S. (2021). Phytochemical Analysis of Bioactive Compounds in Ethanolic Extract of Sterculiaquadrifida R.Br. InternationalConferenceonLifeSciencesandTechnology (ICoLiST 2020), Malang, 29 September 2020, 1-7. https://doi.org/10.1063/5.0053057
[38]
Guerrero, R.V., Vargas, R.A. and Petricevich, V.L. (2017) Chemical Compounds and Biological Activity of an Extract from Bougainvillea X Buttiana (Var. Rose) Holttum and Standl. InternationalJournalofPharmacyandPharmaceuticalSciences, 9, 42-46. https://doi.org/10.22159/ijpps.2017v9i3.16190
[39]
Asif, M. (2016) Mini Review on Important Biological Properties of Benzofuran Derivatives. JournalofAnalytical&PharmaceuticalResearch, 3, Article 00050. https://doi.org/10.15406/japlr.2016.03.00050
[40]
Miao, Y., Hu, Y., Yang, J., Liu, T., Sun, J. and Wang, X. (2019) Natural Source, Bioactivity and Synthesis of Benzofuran Derivatives. RSCAdvances, 9, 27510-27540. https://doi.org/10.1039/c9ra04917g
[41]
Mustafa, R.A., Hamid, A.A., Mohamed, S. and Bakar, F.A. (2010) Total Phenolic Compounds, Flavonoids, and Radical Scavenging Activity of 21 Selected Tropical Plants. JournalofFoodScience, 75, C28-C35. https://doi.org/10.1111/j.1750-3841.2009.01401.x
[42]
Tadić, V., Oliva, A., Božović, M., Cipolla, A., De Angelis, M., Vullo, V., etal. (2017) Chemical and Antimicrobial Analyses of Sideritisromana L. Subsp. purpurea (Tal. ex Benth.) Heywood, an Endemic of the Western Balkan. Molecules, 22, Article 1395. https://doi.org/10.3390/molecules22091395
[43]
Aicha, L., Rachid, D. and Abed, A. (2017) Antibacterial Activity and Anti-Biofilm Formation of Henna (Lawsoniainermis) Extracts against Pseudomonasaeruginosa. JournalofAppliedEnvironmentalandBiologicalSciences, 7, 92-104.
[44]
Sharma, R.K., Goel, A. and Bhatia, A.K. (2016) Antityphoid Activity and Phyto-Chemical Screening of Different Extracts of L. Inermis Plant Leaves. InternationalJournalofCurrentResearch, 8, 37539-37542.
[45]
de Moraes Alves, M.M., Brito, L.M., Souza, A.C., De Carvalho, T.P., Viana, F.J.C., de Alcântara Oliveira, F.A., etal. (2018) Antimicrobial Activity and Cytotoxic Assessment of Gallic and Ellagic Acids. JornalInterdisciplinardeBiociências, 3, 11-17. https://doi.org/10.26694/jibi.v3i1.6626
[46]
Macêdo, N.S., dos Santos Barbosa, C.R., Bezerra, A.H., de Sousa Silveira, Z., da Silva, L., Coutinho, H.D.M., etal. (2022) Evaluation of Ellagic Acid and Gallic Acid as Efflux Pump Inhibitors in Strains of Staphylococcusaureus. BiologyOpen, 11, bio059434. https://doi.org/10.1242/bio.059434
[47]
Lima, V.N., Oliveira-Tintino, C.D.M., Santos, E.S., Morais, L.P., Tintino, S.R., Freitas, T.S., etal. (2016) Antimicrobial and Enhancement of the Antibiotic Activity by Phenolic Compounds: Gallic Acid, Caffeic Acid and Pyrogallol. MicrobialPathogenesis, 99, 56-61. https://doi.org/10.1016/j.micpath.2016.08.004
[48]
Malik, A., Khatkar, A. and Kakkar, S. (2023) A Review on Pharmacological Activities of Vanillic Acid and Its Derivatives. IndoGlobalJournalofPharmaceuticalSciences, 13, 1-12. https://doi.org/10.35652/igjps.2023.13001
[49]
Zhao, Y., Chen, M., Zhao, Z. and Yu, S. (2015) The Antibiotic Activity and Mechanisms of Sugarcane (Saccharumofficinarum L.) Bagasse Extract against Food-Borne Pathogens. FoodChemistry, 185, 112-118. https://doi.org/10.1016/j.foodchem.2015.03.120
[50]
Tan, Z., Deng, J., Ye, Q. and Zhang, Z. (2022) The Antibacterial Activity of Natural-Derived Flavonoids. CurrentTopicsinMedicinalChemistry, 22, 1009-1019. https://doi.org/10.2174/1568026622666220221110506
[51]
Farhadi, F., Khameneh, B., Iranshahi, M. and Iranshahy, M. (2018) Antibacterial Activity of Flavonoids and Their Structure-Activity Relationship: An Update Review. PhytotherapyResearch, 33, 13-40. https://doi.org/10.1002/ptr.6208
[52]
Benmerache, A., Benteldjoune, M., Alabdul Magid, A., Abedini, A., Berrehal, D., Kabouche, A., etal. (2017) Chemical Composition, Antioxidant and Antibacterial Activities of Tamarixbalansae J. Gay Aerial Parts. NaturalProductResearch, 31, 2828-2835. https://doi.org/10.1080/14786419.2017.1299729
[53]
Hardiyanti, R., Marpaung, L., Adnyana, I.K. and Simanjuntak, P. (2019) Isolation of Quercitrin from Dendrophthoepentandra (L.) Miq Leaves and It’s Antioxidant and Antibacterial Activities. RasayanJournalofChemistry, 12, 1822-1827. https://doi.org/10.31788/rjc.2019.1235353
[54]
Alhadrami, H.A., Hamed, A.A., Hassan, H.M., Belbahri, L., Rateb, M.E. and Sayed, A.M. (2020) Flavonoids as Potential Anti-MRSA Agents through Modulation of PBP2a: A Computational and Experimental Study. Antibiotics, 9, Article 562. https://doi.org/10.3390/antibiotics9090562
[55]
Lopes, G., Pinto, E. and Salgueiro, L. (2016) Natural Products: An Alternative to Conventional Therapy for Dermatophytosis? Mycopathologia, 182, 143-167. https://doi.org/10.1007/s11046-016-0081-9
[56]
Alawode, T.T., Lajide, L., Olaleye, M. and Owolabi, B. (2021) Stigmasterol and β-Sitosterol: Antimicrobial Compounds in the Leaves of Icacinatrichantha Identified by GC-MS. Beni-SuefUniversityJournalofBasicandAppliedSciences, 10, Article No. 80. https://doi.org/10.1186/s43088-021-00170-3
[57]
Thotathil, V., Rizk, H.H., Fakrooh, A. and Sreerama, L. (2022) Phytochemical Analysis of Acaciaehrenbergiana (Hayne) Grown in Qatar: Identification of Active Ingredients and Their Biological Activities. Molecules, 27, Article 6400. https://doi.org/10.3390/molecules27196400
[58]
Nweze, C., Ibrahim, H. and Ndukwe, G.I. (2019) Beta-Sitosterol with Antimicrobial Property from the Stem Bark of Pomegranate (Punicagranatum Linn). JournalofAppliedSciencesandEnvironmentalManagement, 23, 1045-1049. https://doi.org/10.4314/jasem.v23i6.7
[59]
Doğan, A., Otlu, S., Çelebi, Ö., Aksu Kiliçle, P., Gülmez Sağlam, A., Doğan, A.N.C., etal. (2017) An Investigation of Antibacterial Effects of Steroids. TurkishJournalofVeterinaryandAnimalSciences, 41, 302-305. https://doi.org/10.3906/vet-1510-24
[60]
Jain, P., Sharma, H.P., Basri, F., Baraik, B., Kumari, S. and Pathak, C. (2014) Pharmacological Profiles of Ethno-Medicinal Plant: Plumbagozeylanica L.—A Review. InternationalJournalofPharmaceuticalSciencesReviewandResearch, 24, 157-163.
[61]
Luchnikova, N.A., Grishko, V.V. and Ivshina, I.B. (2020) Biotransformation of Oleanane and Ursane Triterpenic Acids. Molecules, 25, Article 5526. https://doi.org/10.3390/molecules25235526