全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Phytochemical Analysis and Antimicrobial Activity of Lawsonia inermis Leaf Extracts from Burkina Faso

DOI: 10.4236/ajps.2024.157038, PP. 552-576

Keywords: Lawsonia inermis, Phytochemical Profile, HPLC, GC-MS Analysis, Antimicrobial Activity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lawsonia inermis is a hairless plant growing in various regions of North Africa, the Indian subcontinent, and the Middle East. It possesses many medicinal attributes, including curative properties against infectious dermatoses. This study was carried out to evaluate the phytochemical profile of the crude ethanolic extract of the plant leaves and its fractions as well as their antimicrobial activities. The phytochemical profile was performed using high-performance thin-layer chromatography (HPTLC), gas chromatography-mass spectrometry (GC-MS), and high-performance liquid chromatography (HPLC). Additionally, the phenolic and flavonoid contents were determined using the Folin-Ciocalteu spectrophotometric and the aluminum trichloride methods. Antimicrobial activity was tested using disc diffusion and microdilution methods. The presence of flavonoids, tannins, sterols, and triterpenes was revealed. GC-MS detected twelve compounds main compounds consisting of saturated and unsaturated fatty acids and phenolic and terpenoid compounds among twenty-seven components. HPLC also detected high contents of phenolic acids and flavonoids. The most abundant triterpene and sterols were ursolic acid (around 43.14 g/100g DW, 13.9 g/100g dry weight (DW), and 0.68 g/100g DW) in the crude ethanolic extract of leaves (FeLi), hexane fraction (FHLi) and dichloromethane fraction (FDLi), respectively and, β-sitosterol in FeLi (56.7 mg/100g DW), FHLi (10.55 g/100g DW), FDLi (106.1 mg/100g DW) and butanol fraction (FBLi) (357.4 mg/100g DW). Among the flavonoids, rutin = 3.24 g/100g and quercetin = 0.63 g/100g in the ethanolic extract, rutin = 15.73 g/100g in the dichloromethane fraction, and rutin = 0.23 g/100g) in the aqueous fraction; and among phenolic compounds, caffeic acid (37.65 g/100g DW) and vanillic acid (22.70 g/100g DW) were the most important in the ethyl acetate fraction (FAeLi). All organic fractions exhibited interesting antibacterial and antifungal activities against the tested strains, with the best activity recorded with the dichloromethane and ethyl acetate fractions. The leaf extracts’ phytochemical profile and antimicrobial activity support the use of Lawsonia inermis against infectious skin diseases.

References

[1]  Manso, T., Lores, M. and de Miguel, T. (2021) Antimicrobial Activity of Polyphenols and Natural Polyphenolic Extracts on Clinical Isolates. Antibiotics, 11, Article 46.
https://doi.org/10.3390/antibiotics11010046
[2]  WHO (2019) New Report Calls for Urgent Action to Avert Antimicrobial Resistance Crisis.
[3]  Muthuraman, S. and Ravichandran, S. (2016) Examining the Anti-Candidal Activity of 10 Selected Indian Herbs and Investigating the Effect of Lawsonia inermis Extract on Germ Tube Formation, Protease, Phospholipase, and Aspartate Dehydrogenase Enzyme Activity in Candida Albicans. Indian Journal of Pharmacology, 48, 47-52.
https://doi.org/10.4103/0253-7613.174523
[4]  Youl, O., Moné-Bassavé, B.R.H., Yougbaré, S., Yaro, B., Traoré, T.K., Boly, R., et al. (2023) Phytochemical Screening, Polyphenol and Flavonoid Contents, and Antioxidant and Antimicrobial Activities of Opilia amentacea Roxb. (Opiliaceae) Extracts. Applied Biosciences, 2, 493-512.
https://doi.org/10.3390/applbiosci2030031
[5]  Ibrahim, S.M.S., Rasool, C.S. and Al-Asady, A.A. (2021) Antimicrobial Activity of Crude Henna Extract against Gram-Positive Bacteria. Iraq Medical Journal, 5, 18-26.
https://doi.org/10.22317/imj.v5i3.1036
[6]  Álvarez-Martínez, F.J., Barrajón-Catalán, E., Encinar, J.A., Rodríguez-Díaz, J.C. and Micol, V. (2020) Antimicrobial Capacity of Plant Polyphenols against Gram-Positive Bacteria: A Comprehensive Review. Current Medicinal Chemistry, 27, 2576-2606.
https://doi.org/10.2174/0929867325666181008115650
[7]  Dahake, P.R. and Kamble, S.I. (2015) Study on Antimicrobial Potential and Preliminary Phytochemical Screening of Lawsonia inermis Linn. International Journal of Pharmaceutical Sciences and Research, 6, 3344-3350.
[8]  Leonard, A.O., Agih, I.A., Akeem, A.A. and Benjamin, K.N. (2022) Phytochemical Screening and Antioxidant Activities of the Bark of Lawsonia inermis (Henna) Grown in Dekina, Kogi, Nigeria. UMYU Scientifica, 1, 274-279.
https://doi.org/10.56919/usci.1122.035
[9]  Dhaouadi, K., Meliti, W., Dallali, S., Belkhir, M., Ouerghemmi, S., Sebei, H., et al. (2015) Commercial Lawsonia inermis L. Dried Leaves and Processed Powder: Phytochemical Composition, Antioxidant, Antibacterial, and Allelopathic Activities. Industrial Crops and Products, 77, 544-552.
https://doi.org/10.1016/j.indcrop.2015.09.037
[10]  Al-Snafi, A.E. (2019) A Review on Lawsonia inermis: A Potential Medicinal Plant. International Journal of Current Pharmaceutical Research, 11, 1-13.
https://doi.org/10.22159/ijcpr.2019v11i5.35695
[11]  Rahmoun, N., Boucherit-Otmani, Z., Boucherit, K., Benabdallah, M. and Choukchou-Braham, N. (2012) Antifungal Activity of the Algerian Lawsonia inermis (Henna). Pharmaceutical Biology, 51, 131-135.
https://doi.org/10.3109/13880209.2012.715166
[12]  Ziaei, A., Sahranavard, S., Gharagozlou, M.J. and Faizi, M. (2016) Preliminary Investigation of the Effects of Topical Mixture of Lawsonia inermis L. and Ricinus communis L. Leaves Extract in Treatment of Osteoarthritis Using MIA Model in Rats. DARU Journal of Pharmaceutical Sciences, 24, Article No. 12.
https://doi.org/10.1186/s40199-016-0152-y
[13]  Debapriya, D., Dipu, S., Rajat, B., Suchita, S., Bidisha, M., Sayak, G. et al. (2020) Insights into the Phytochemical Potential of Lawsonia inermis L. for Future Small Molecule Based Therapeutic Applications. International Research Journals, 11, 1-7.
[14]  Fathima, S.N. (2018) Pharmacognostic Assessment of Lawsonia inermis Flowers. Journal of Pharmacognosy and Phytochemistry, 7, 2365-2369.
[15]  Madina, B. (2020) Etude phytochimique et évaluation biologique des extraits aqueux de Lawsonia inermis et de Juglans regia. Université Frères Mentouri Constantine 1.
[16]  Ollo, Y., Sibidou, Y., Palpouguini, L., Boubacar, Y., Christian, M.T., Halidou, T., et al. (2021) Preliminary Screening of the Antimicrobial Activity of Nine Medicinal Plant Species from Burkina Faso. Journal of Medicinal Plants Research, 15, 522-530.
https://doi.org/10.5897/jmpr2021.7106
[17]  Koala, M., Kaboré, B., Rimwagna Ouedraogo, C.W., Belemnaba, L., Nitiema, M., Compaoré, S. et al. (2023) High-Performance Thin-Layer Chromatography Phyto-Chemical Profiling, Antioxidant Activities, and Acute Toxicity of Leaves Extracts of Lannea velutina A. Rich. Journal of Medicinal and Chemical Sciences, 6, 410-423.
[18]  Koala, M., Ramde-Tiendrebeogo, A., Ouedraogo, N., Ilboudo, S., Kaboré, B., Kini, F.B., et al. (2021) HPTLC Phytochemical Screening and Hydrophilic Antioxidant Activities of Apium graveolens L., Cleome gynandra L., and Hibiscus sabdariffa L. Used for Diabetes Management. American Journal of Analytical Chemistry, 12, 15-28.
https://doi.org/10.4236/ajac.2021.121002
[19]  Owolabi, T., Osaretin, D. and Eyinayan, B. (2022) Bioactive Composition and TLC Profile Data on Pax Herbal Malatreat Tea. Drug Analytical Research, 6, 35-39.
https://doi.org/10.22456/2527-2616.125038
[20]  Jagetia, G.C. (2018) The Phytochemical and Thin Layer Chromatograhy Profile of Ethnomedcinal Plant Helicia Nilagirica (Bedd). International Journal of Pharmacognosy & Chinese Medicine, 2, Article 000131.
https://doi.org/10.23880/ipcm-16000131
[21]  Sombié, E.N., Somda, D.G., Konaté, S., Youl, O., Traoré, T.K., N’do, J.Y-P., et al. (2023) HPLC Analysis and Protective Effect of Fractions from Ethanolic Extract of Calotropis procera (Ait.) R. Br Root Bark against Diethylnitrosamine Induced-Hepatic Damage in Wistar Rats. Tropical Journal of Natural Product Research, 7, 3462-3469.
https://doi.org/10.26538/tjnpr/v7i7.26
[22]  Ponce, A.G., Fritz, R., Del Valle, C. and Roura, S.I. (2003) Antimicrobial Activity of Essential Oils on the Native Microflora of Organic Swiss Chard. LWT-Food Science and Technology, 36, 679-684.
https://doi.org/10.1016/s0023-6438(03)00088-4
[23]  Kuete, V. (2010) Potential of Cameroonian Plants and Derived Products against Microbial Infections: A Review. Planta Medica, 76, 1479-1491.
https://doi.org/10.1055/s-0030-1250027
[24]  Marmonier, A. (1990) Introduction aux techniques d’étude des antibiotiques. In: Denis, F., Ploy, M.-C., Martin, C., Bingen, P.E. and Quentin, R., Eds., Bactériologie Médicale, Technique Usuelles, Elsevier, 227-236.
[25]  Abdulfatai, A. and Ayotunde, O.O. (2022) Lawsonia inermis Linn; Review of Plant with Both Industrial and Medicinal Properties. Media Kedokteran Hewan, 33, 105-130.
https://doi.org/10.20473/mkh.v33i2.2022.105-130
[26]  Elansary, H.O., Szopa, A., Kubica, P., Ekiert, H., Al-Mana, F.A. and Al-Yafrsi, M.A. (2020) Antioxidant and Biological Activities of Acacia saligna and Lawsonia inermis Natural Populations. Plants, 9, Article 908.
https://doi.org/10.3390/plants9070908
[27]  Meutia, N., Putra, B. and Jusuf, N.K. (2021) Antifungal Activity of Henna Leaf Extract (Lawsonia inermis Linn.) against Inhibition of Trichophyton rubrum Fungal Growth Cause Tinea Unguium. Jurnal Buletin Farmatera, 6, 72-79.
[28]  Kouadri, F. (2018) In vitro Antibacterial and Antifungal Activities of the Saudi Lawsonia inermis Extracts against Some Nosocomial Infection Pathogens. Journal of Pure and Applied Microbiology, 12, 281-286.
https://doi.org/10.22207/jpam.12.1.33
[29]  Górniak, I., Bartoszewski, R. and Króliczewski, J. (2018) Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochemistry Reviews, 18, 241-272.
https://doi.org/10.1007/s11101-018-9591-z
[30]  Gallo, F.R., Multari, G., Palazzino, G., Pagliuca, G., Zadeh, S.M.M., Biapa, P.C.N., et al. (2014) Henna through the Centuries: A Quick HPTLC Analysis Proposal to Check Henna Identity. Revista Brasileira de Farmacognosia, 24, 133-140.
https://doi.org/10.1016/j.bjp.2014.03.008
[31]  Abdelrahman, A.M., Kheiralla, K.E.K., Ibrahim, N.Y., Elegail, A., Yousif, M.A. and Ahmed, E.M. (2020) Antimycobacterial Activity and Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Henna (Lawsonia inermis) Leaves Extract. Arabian Journal of Medicinal & Aromatic Plants, 7, 1-9.
[32]  Hassan Wagini, N. (2014) Phytochemical Analysis of Nigerian and Egyptian Henna (Lawsonia inermis L.) Leaves Using TLC, FTIR and GCMS. Plant, 2, 27-32.
https://doi.org/10.11648/j.plant.20140203.11
[33]  Dev, S.N.C. and Khan, M.W. (2016) GC-MS Analysis of Phytochemicals of Methanolic Extract of Leaves of Lawsonia inermis LINN. Indian Journal of Medicial Research and Pharmaceutical Sciences, 3, 77-82.
[34]  Bhat, M.P., Rudrappa, M., Hugar, A., Gunagambhire, P.V., Suresh Kumar, R., Nayaka, S., et al. (2023) In-vitro Investigation on the Biological Activities of Squalene Derived from the Soil Fungus Talaromyces pinophilus. Heliyon, 9, e21461.
https://doi.org/10.1016/j.heliyon.2023.e21461
[35]  Kim, S. and Karadeniz, F. (2012) Biological Importance and Applications of Squalene and Squalane. Advances in Food and Nutrition Research, 65, 223-233.
https://doi.org/10.1016/b978-0-12-416003-3.00014-7
[36]  Huang, Z., Lin, Y. and Fang, J. (2009) Biological and Pharmacological Activities of Squalene and Related Compounds: Potential Uses in Cosmetic Dermatology. Molecules, 14, 540-554.
https://doi.org/10.3390/molecules14010540
[37]  Siswadi, S. and Saragih, G.S. (2021). Phytochemical Analysis of Bioactive Compounds in Ethanolic Extract of Sterculia quadrifida R.Br. International Conference on Life Sciences and Technology (ICoLiST 2020), Malang, 29 September 2020, 1-7.
https://doi.org/10.1063/5.0053057
[38]  Guerrero, R.V., Vargas, R.A. and Petricevich, V.L. (2017) Chemical Compounds and Biological Activity of an Extract from Bougainvillea X Buttiana (Var. Rose) Holttum and Standl. International Journal of Pharmacy and Pharmaceutical Sciences, 9, 42-46.
https://doi.org/10.22159/ijpps.2017v9i3.16190
[39]  Asif, M. (2016) Mini Review on Important Biological Properties of Benzofuran Derivatives. Journal of Analytical & Pharmaceutical Research, 3, Article 00050.
https://doi.org/10.15406/japlr.2016.03.00050
[40]  Miao, Y., Hu, Y., Yang, J., Liu, T., Sun, J. and Wang, X. (2019) Natural Source, Bioactivity and Synthesis of Benzofuran Derivatives. RSC Advances, 9, 27510-27540.
https://doi.org/10.1039/c9ra04917g
[41]  Mustafa, R.A., Hamid, A.A., Mohamed, S. and Bakar, F.A. (2010) Total Phenolic Compounds, Flavonoids, and Radical Scavenging Activity of 21 Selected Tropical Plants. Journal of Food Science, 75, C28-C35.
https://doi.org/10.1111/j.1750-3841.2009.01401.x
[42]  Tadić, V., Oliva, A., Božović, M., Cipolla, A., De Angelis, M., Vullo, V., et al. (2017) Chemical and Antimicrobial Analyses of Sideritis romana L. Subsp. purpurea (Tal. ex Benth.) Heywood, an Endemic of the Western Balkan. Molecules, 22, Article 1395.
https://doi.org/10.3390/molecules22091395
[43]  Aicha, L., Rachid, D. and Abed, A. (2017) Antibacterial Activity and Anti-Biofilm Formation of Henna (Lawsonia inermis) Extracts against Pseudomonas aeruginosa. Journal of Applied Environmental and Biological Sciences, 7, 92-104.
[44]  Sharma, R.K., Goel, A. and Bhatia, A.K. (2016) Antityphoid Activity and Phyto-Chemical Screening of Different Extracts of L. Inermis Plant Leaves. International Journal of Current Research, 8, 37539-37542.
[45]  de Moraes Alves, M.M., Brito, L.M., Souza, A.C., De Carvalho, T.P., Viana, F.J.C., de Alcântara Oliveira, F.A., et al. (2018) Antimicrobial Activity and Cytotoxic Assessment of Gallic and Ellagic Acids. Jornal Interdisciplinar de Biociências, 3, 11-17.
https://doi.org/10.26694/jibi.v3i1.6626
[46]  Macêdo, N.S., dos Santos Barbosa, C.R., Bezerra, A.H., de Sousa Silveira, Z., da Silva, L., Coutinho, H.D.M., et al. (2022) Evaluation of Ellagic Acid and Gallic Acid as Efflux Pump Inhibitors in Strains of Staphylococcus aureus. Biology Open, 11, bio059434.
https://doi.org/10.1242/bio.059434
[47]  Lima, V.N., Oliveira-Tintino, C.D.M., Santos, E.S., Morais, L.P., Tintino, S.R., Freitas, T.S., et al. (2016) Antimicrobial and Enhancement of the Antibiotic Activity by Phenolic Compounds: Gallic Acid, Caffeic Acid and Pyrogallol. Microbial Pathogenesis, 99, 56-61.
https://doi.org/10.1016/j.micpath.2016.08.004
[48]  Malik, A., Khatkar, A. and Kakkar, S. (2023) A Review on Pharmacological Activities of Vanillic Acid and Its Derivatives. Indo Global Journal of Pharmaceutical Sciences, 13, 1-12.
https://doi.org/10.35652/igjps.2023.13001
[49]  Zhao, Y., Chen, M., Zhao, Z. and Yu, S. (2015) The Antibiotic Activity and Mechanisms of Sugarcane (Saccharum officinarum L.) Bagasse Extract against Food-Borne Pathogens. Food Chemistry, 185, 112-118.
https://doi.org/10.1016/j.foodchem.2015.03.120
[50]  Tan, Z., Deng, J., Ye, Q. and Zhang, Z. (2022) The Antibacterial Activity of Natural-Derived Flavonoids. Current Topics in Medicinal Chemistry, 22, 1009-1019.
https://doi.org/10.2174/1568026622666220221110506
[51]  Farhadi, F., Khameneh, B., Iranshahi, M. and Iranshahy, M. (2018) Antibacterial Activity of Flavonoids and Their Structure-Activity Relationship: An Update Review. Phytotherapy Research, 33, 13-40.
https://doi.org/10.1002/ptr.6208
[52]  Benmerache, A., Benteldjoune, M., Alabdul Magid, A., Abedini, A., Berrehal, D., Kabouche, A., et al. (2017) Chemical Composition, Antioxidant and Antibacterial Activities of Tamarix balansae J. Gay Aerial Parts. Natural Product Research, 31, 2828-2835.
https://doi.org/10.1080/14786419.2017.1299729
[53]  Hardiyanti, R., Marpaung, L., Adnyana, I.K. and Simanjuntak, P. (2019) Isolation of Quercitrin from Dendrophthoe pentandra (L.) Miq Leaves and It’s Antioxidant and Antibacterial Activities. Rasayan Journal of Chemistry, 12, 1822-1827.
https://doi.org/10.31788/rjc.2019.1235353
[54]  Alhadrami, H.A., Hamed, A.A., Hassan, H.M., Belbahri, L., Rateb, M.E. and Sayed, A.M. (2020) Flavonoids as Potential Anti-MRSA Agents through Modulation of PBP2a: A Computational and Experimental Study. Antibiotics, 9, Article 562.
https://doi.org/10.3390/antibiotics9090562
[55]  Lopes, G., Pinto, E. and Salgueiro, L. (2016) Natural Products: An Alternative to Conventional Therapy for Dermatophytosis? Mycopathologia, 182, 143-167.
https://doi.org/10.1007/s11046-016-0081-9
[56]  Alawode, T.T., Lajide, L., Olaleye, M. and Owolabi, B. (2021) Stigmasterol and β-Sitosterol: Antimicrobial Compounds in the Leaves of Icacina trichantha Identified by GC-MS. Beni-Suef University Journal of Basic and Applied Sciences, 10, Article No. 80.
https://doi.org/10.1186/s43088-021-00170-3
[57]  Thotathil, V., Rizk, H.H., Fakrooh, A. and Sreerama, L. (2022) Phytochemical Analysis of Acaciaehrenbergiana (Hayne) Grown in Qatar: Identification of Active Ingredients and Their Biological Activities. Molecules, 27, Article 6400.
https://doi.org/10.3390/molecules27196400
[58]  Nweze, C., Ibrahim, H. and Ndukwe, G.I. (2019) Beta-Sitosterol with Antimicrobial Property from the Stem Bark of Pomegranate (Punica granatum Linn). Journal of Applied Sciences and Environmental Management, 23, 1045-1049.
https://doi.org/10.4314/jasem.v23i6.7
[59]  Doğan, A., Otlu, S., Çelebi, Ö., Aksu Kiliçle, P., Gülmez Sağlam, A., Doğan, A.N.C., et al. (2017) An Investigation of Antibacterial Effects of Steroids. Turkish Journal of Veterinary and Animal Sciences, 41, 302-305.
https://doi.org/10.3906/vet-1510-24
[60]  Jain, P., Sharma, H.P., Basri, F., Baraik, B., Kumari, S. and Pathak, C. (2014) Pharmacological Profiles of Ethno-Medicinal Plant: Plumbago zeylanica L.—A Review. International Journal of Pharmaceutical Sciences Review and Research, 24, 157-163.
[61]  Luchnikova, N.A., Grishko, V.V. and Ivshina, I.B. (2020) Biotransformation of Oleanane and Ursane Triterpenic Acids. Molecules, 25, Article 5526.
https://doi.org/10.3390/molecules25235526
[62]  Silva, M.D.L. David, J.P., Silva, L.C.R.C., Santos, R.A.F., David, J.M., Lima, L.S., et al. (2012) Bioactive Oleanane, Lupane and Ursane Triterpene Acid Derivatives. Molecules, 17, 12197-12205.
https://doi.org/10.3390/molecules171012197
[63]  Pereira, V.V., Pereira, N.R., Pereira, R.C.G., Duarte, L.P., Takahashi, J.A. and Silva, R.R. (2021) Synthesis and Antimicrobial Activity of Ursolic Acid Ester Derivatives. Chemistry & Biodiversity, 19, e202100566.
https://doi.org/10.1002/cbdv.202100566

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133