全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Convergence Phenomenon with Fourier Series of tg( x 2 ) and Alike

DOI: 10.4236/apm.2024.147032, PP. 556-595

Keywords: Gibbs Phenomenon, Generalized Functions, Weak Convergence, Chebyshev Polynomials of First and Second Kind, Even and Odd Generating Functions for Chebyshev Polynomials, Polylogarithms, Completeness Relations

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Fourier series of the 2π-periodic functions tg( x 2 ) and 1 sin( x ) and some of their relatives (first of their integrals) are investigated and illustrated with respect to their convergence. These functions are Generalized functions and the convergence is weak convergence in the sense of the convergence of continuous linear functionals defining them. The figures show that the approximations of the Fourier series possess oscillations around the function which they represent in a broad band embedding them. This is some analogue to the Gibbs phenomenon. A modification of Fourier series by expansion in powers cos n ( x ) for the symmetric part of functions and sin( x ) cos n1 ( x ) for the antisymmetric part (analogous to Taylor series) is discussed and illustrated by examples. The Fourier series and their convergence behavior are illustrated also for some 2π-periodic delta-function-like sequences connected with the Poisson theorem showing non-vanishing oscillations around the singularities similar to the Gibbs phenomenon in the neighborhood of discontinuities of functions.

References

[1]  Ul’yanov, P.L. (1977) Matematicheskaya entsyklopedia, Tom 1 (from 5 volumes). “Sovetskaya Encyclopedia” Publishing House, 958-959.
[2]  Sommerfeld, A. (1958) Partielle Differentialgleichungen der Physik, 4. Sauter, Akademische Verlagsgesellschaft Geest und Portig.
[3]  Fikhtengol’ts, G.M. (1960) Kurs differentialnovo i integral’novo is’chisleniya, tom III. Fizmatgiz.
[4]  Arfken, G. (1985) Mathematical Methods for Physicists. Third Edition, Academic Press.
[5]  Körner, T.W. (1988) Fourier Analysis. Cambridge University Press.
https://doi.org/10.1017/CBO9781107049949
[6]  Weisstein, E.W. (1995) Fourier Series.
https://mathworld.wolfram.com/FourierSeries.html
[7]  Schwartz, L. (1961) Méthodes Mathématiques pour les Sciences Physiques. Hermann.
[8]  Gel’fand, I.M. and Shilov, G.E. (1959) Obobstchonnyje funktsii, vol. 1. Fizmatgiz.
[9]  Vilyenkin, N.Y. (1972) Obobshtchennyje funktzii. In: Krein, S.G., Ed., Funktsional’nyj analiz, 2nd Edition, Naúka, 455-544.
[10]  Vladimirov, V.S. (1976) Obobstshonnyje funktsii v matematicheskoy fizike. Nauka.
[11]  Apostol, T.M. (2010) Zeta and Related Functions. In: Olver, F.W.J., Lozier, D.W., Boisvert, R.F. and Clark, C.W., Eds., NIST Handbook of Mathematical Functions, Cambridge University Press, 602-616.
[12]  Andrews, G.E., Askey, R. and Roy, R. (1999) Special Functions. Cambridge University Press.
https://doi.org/10.1017/CBO9781107325937
[13]  Tolstov, G.P. (1980) Ryady Fur’ye. Naúka.
[14]  Gradshteyn, I.S. and Ryzhik, I.M. (1963) Tablitsy integralov, sum, ryadov i proizvedyenij. 4th edition, Fizmatgiz.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133