全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于声虹吸效应的薄膜声学超材料吸声型管道消声器
Film Acoustic Metamaterial Sound-Absorbing Pipe Muffler Based on Acoustic Siphon Effect

DOI: 10.12677/app.2024.147060, PP. 560-570

Keywords: 膜型声学超材料,吸声特性,声虹吸效应,消声器
Membrane Acoustic Metamaterials
, Sound Absorption Characteristics, Acoustic Siphon Effect, Muffler

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文将薄膜型声学超材料应用于消声器中,通过利用其独特的吸声性能,将声学超材料的吸声特性转化为计算消声器的传输损失的特性。通过引入声虹吸效应,有效提升了消声器的消声效果,实现了更为出色的声学性能。获得了一种结构简单、体积小,在管道声学方面能够控制低、宽频噪声的薄膜吸声型消声器。基于将单元扩胞引入声虹吸效应,改善消声器的消声效果,结果表明当扩胞为两个单元结构后,消声器的传输损失获得了提升,获得4个传输损失声峰,最高传输损失峰值为18 dB为提高消声器的消声效果提供了新的优化思路。
In this paper, the thin-film acoustic metamaterial is applied to the muffler. By using its unique sound absorption performance, the sound absorption characteristics of the acoustic metamaterial are transformed into the characteristics of calculating the transmission loss of the muffler. By introducing the acoustic siphon effect, the silencing effect of the muffler is effectively improved, and a better acoustic performance is achieved. A thin film sound-absorbing muffler with simple structure, small size and low and broadband noise control in pipeline acoustics is obtained. Based on the introduction of cell expansion into the acoustic siphon effect, the silencing effect of the muffler is improved. The results show that when the cell is expanded into two unit structures, the transmission loss of the muffler is improved, and four transmission loss peaks are obtained. The maximum transmission loss peak is 18 dB, which provides a new optimization idea for improving the silencing effect of the muffler.

References

[1]  Liu, Z., Zhang, X., Mao, Y., et al. (2000) Locally Resonant Sonic Materials. Science, 289, 1734-1736.
https://doi.org/10.1126/science.289.5485.1734
[2]  Zhang, H., Xiao, Y., Wen, J., et al. (2016) Ultra-Thin Smart Acoustic Metasurface for Low-Frequency Sound Insulation. Applied Physics Letters, 108, Article 141902.
https://doi.org/10.1063/1.4945664
[3]  Lu, M.H., Feng, L. and Chen, Y.F. (2009) Phononic Crystals and Acoustic Metamaterials. Materials Today, 12, 34-42.
https://doi.org/10.1016/S1369-7021(09)70315-3
[4]  侯九霄, 朱海潮, 毛荣富, 等. 柔性背腔鼓型消声器声学特性分析[J]. 国防科技大学学报, 2019, 41(6): 75-82.
[5]  兰晓乾, 吴锦武, 李贺铭, 等. 板膜耦合微穿孔板消声器的性能试验分析[J]. 声学技术, 2023, 42(6): 819-824.
[6]  赵攻, 周海亭, 陈光冶, 等. 机械振动与噪声学[M]. 北京: 科学出版社, 2004: 160-161.
[7]  朱从云, 李晓娟, 鲁付杰, 等. 主动消声器的控制策略[J]. 中原工学院学报, 2016, 27(1): 13-16.
[8]  游彩霞, 裴植炫, 何雪松. 带消声功能的潜艇换热器声学性能仿真[J]. 造船技术, 2024, 52(1): 47-49.
[9]  伏军, 曹玉刚, 王伟晟, 等. 某柴油机排气净化消声器结构单元声学性能研究[J]. 邵阳学院学报(自然科学版), 2023, 20(6): 17-25.
[10]  赵晓臣. 考虑声固耦合的管道噪音控制技术研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工程大学, 2016.
[11]  安君. 膜消声器结构设计及声学性能研究[D]: [硕士学位论文]. 太原: 中北大学, 2018.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133