|
基于兼容性感知的服务推荐方法研究
|
Abstract:
随着互联网的发展,信息爆炸的问题日益突出,开发者很难准确地找到自己需要的服务。服务推荐技术可以帮助开发者过滤信息,提供个性化的推荐,节省开发者的时间和精力。现有的Web服务推荐系统通常更注重Web服务推荐的准确性,而忽略了Web服务之间的兼容性。这可能导致在创建应用程序时出现服务之间不兼容的情况。为了解决上述挑战,本文提出了一种基于兼容性感知的服务推荐方法(SRCR)。首先,SRCR使用图神经网络算法来对历史记录进行深入挖掘,提取应用程序和服务的历史记录特征,从而计算其偏好。其次,SRCR通过对历史服务共同调用情况进行分析,预测候选服务和现有服务的兼容性。最后,将上述二者相融合得到最终的服务列表。在ProgrammableWeb上收集的真实数据集上进行的大量实验证明了我们所提出的SRCR方法的有效性。
With the development of the Internet, the problem of information explosion has become increasingly prominent. Developers find it difficult to accurately find the services they need. Service recommendation technology can help developers filter information, provide personalized recommendations, and save developers time and energy. The existing Web service recommendation systems usually focus more on the accuracy of Web service recommendations, while ignoring the compatibility between Web services. This may lead to incompatibility between services when creating applications. To address the aforementioned challenge, this paper proposes a Service Recommendation method based on Compatibility Awareness (SRCR). Firstly, SRCR employs graph neural network algorithm to deeply mine historical records, extract historical record features of applications and services, and calculate the preferences of applications. Secondly, SRCR predicts the compatibility between candidate services and existing services by analyzing the joint invocation of historical services. Finally, the above two are combined to obtain the final service list. A large number of experiments conducted on real datasets collected on ProgrammableWeb have demonstrated the effectiveness of our proposed SRCR method.
[1] | 陈熳熳, 王俊峰, 李晓慧, 等. 云服务推荐中基于多源特征和多任务学习的时序QoS预测[J]. 四川大学学报(自然科学版), 2024, 61(4): 140-150. |
[2] | 刘庆雪, 王荔芳, 潘国庆, 等. 面向功能语义增强与标签关联的Web服务标签推荐[J/OL]. 计算机应用研究, 2024: 1-8. https://doi.org/10.19734/j.issn.1001-3695.2024.01.0003, 2024-05-31. |
[3] | Deng, S., Huang, L. and Xu, G. (2014) Social Network-Based Service Recommendation with Trust Enhancement. Expert Systems with Applications, 41, 8075-8084. https://doi.org/10.1016/j.eswa.2014.07.012 |
[4] | Wang, L., Zhang, X., Wang, R., Yan, C., Kou, H. and Qi, L. (2020) Diversified Service Recommendation with High Accuracy and Efficiency. Knowledge-Based Systems, 204, Article ID: 106196. https://doi.org/10.1016/j.knosys.2020.106196 |
[5] | Ma, Y., Geng, X. and Wang, J. (2021) A Deep Neural Network with Multiplex Interactions for Cold-Start Service Recommendation. IEEE Transactions on Engineering Management, 68, 105-119. https://doi.org/10.1109/tem.2019.2961376 |
[6] | Yan, R., Fan, Y., Zhang, J., Zhang, J. and Lin, H. (2021) Service Recommendation for Composition Creation Based on Collaborative Attention Convolutional Network. 2021 IEEE International Conference on Web Services (ICWS), Chicago, 5-10 September 2021, 397-405. https://doi.org/10.1109/icws53863.2021.00059 |
[7] | Qi, L., He, Q., Chen, F., Zhang, X., Dou, W. and Ni, Q. (2022) Data-Driven Web Apis Recommendation for Building Web Applications. IEEE Transactions on Big Data, 8, 685-698. https://doi.org/10.1109/tbdata.2020.2975587 |
[8] | Qi, L., Lin, W., Zhang, X., Dou, W., Xu, X. and Chen, J. (2022) A Correlation Graph Based Approach for Personalized and Compatible Web Apis Recommendation in Mobile APP Development. IEEE Transactions on Knowledge and Data Engineering, 35, 5444-5457. https://doi.org/10.1109/tkde.2022.3168611 |
[9] | Wang, X., He, X., Cao, Y., Liu, M. and Chua, T. (2019) KGAT: Knowledge Graph Attention Network for Recommendation. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, 4-8 August 2019, 950-958. https://doi.org/10.1145/3292500.3330989 |
[10] | Grover, A. and Leskovec, J. (2016) node2vec: Scalable Feature Learning for Networks. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13-17 August 2016, 855-864. https://doi.org/10.1145/2939672.2939754 |
[11] | Zhong, Y., Fan, Y., Tan, W. and Zhang, J. (2018) Web Service Recommendation with Reconstructed Profile from Mashup Descriptions. IEEE Transactions on Automation Science and Engineering, 15, 468-478. https://doi.org/10.1109/tase.2016.2624310 |
[12] | Wang, X., Wu, H. and Hsu, C. (2019) Mashup-Oriented API Recommendation via Random Walk on Knowledge Graph. IEEE Access, 7, 7651-7662. https://doi.org/10.1109/access.2018.2890156 |