全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Investigation of Carbonation of Concrete Based on Crushed Sand and Admixtures

DOI: 10.4236/jmmce.2024.125016, PP. 247-264

Keywords: Carbonation, Concrete, Crushed Sand, Sikamant, Water-Repellent

Full-Text   Cite this paper   Add to My Lib

Abstract:

Carbonation is a natural aging process that occurs in all types of concrete. One of its primary implications is the acceleration of steel corrosion caused by the phenomena of depassivation. The goal of this research is to investigate the carbonation of quarry sand-based concrete. The concrete is made of 100% crushed sand 0/6.3, gravel 8/15, and 15/25 from the Arab Contractor quarry in Nomayos, Cameroon, with CEM II B-P 42.5 R from CIMENCAM (Cimenteries du Cameroun). The study employed two admixtures: one with a dual superplasticizing and reducing action (Sikamen) and another with a water-repellent effect (Sika liquid). Carbonation was performed on concrete samples at the following dates: 0, 7, 14, 28, 56, 90, 180 days, one year, and six months. Carbonated concrete (CC) and non-carbonated concrete (NCC) samples are compared in terms of their physical attributes and mineralogical characteristics. The results of this investigation reveal that after more than a year and six months of carbonation, porosity decreases and permeability increases. Despite the high fineness modulus of quarry sand, the compressive strength of quarry sand-based concrete is satisfactory. Carbonation depth is relatively high on some dates, exceeding the minimal cover value for concrete reinforcement. Sikament additive increases concrete compactness and durability while decreasing permeability. Sika water repellant mixes with the lime in cement to generate complimentary crystallizations that block the mortar’s capillaries, making it watertight.

References

[1]  Xi, C. and Cao, S. (2022) Challenges and Future Development Paths of Low Carbon Building Design: A Review. Buildings, 12, Article 163.
https://doi.org/10.3390/buildings12020163
[2]  Chen, C. and Ho, C. (2013) Influence of Cyclic Humidity on Carbonation of Concrete. Journal of Materials in Civil Engineering, 25, 1929-1935.
https://doi.org/10.1061/(asce)mt.1943-5533.0000750
[3]  Turcry, P., Oksri-Nelfia, L., Younsi, A. and Aït-Mokhtar, A. (2014) Analysis of an Accelerated Carbonation Test with Severe Preconditioning. Cement and Concrete Research, 57, 70-78.
https://doi.org/10.1016/j.cemconres.2014.01.003
[4]  Leemann, A. and Moro, F. (2016) Carbonation of Concrete: The Role of CO2 Concentration, Relative Humidity and CO2 Buffer Capacity. Materials and Structures, 50, Article No. 30.
https://doi.org/10.1617/s11527-016-0917-2
[5]  Das, B.B., Rout, S.K., Singh, D.N. and Pandey, S.P. (2012) Some Studies on the Effect of Carbonation on the Engineering Properties of Concrete. 86, Indian Concrete Journal, 7-12.
[6]  Khouadjia, M.L.K., Mezghiche, B. and Drissi, M. (2015) Experimental Evaluation of Workability and Compressive Strength of Concrete with Several Local Sand and Mineral Additions. Construction and Building Materials, 98, 194-203.
https://doi.org/10.1016/j.conbuildmat.2015.08.081
[7]  Zeghichi, L., Benghazi, Z. and Baali, L. (2014) The Effect of the Kind of Sands and Additions on the Mechanical Behaviour of S.C.C. Physics Procedia, 55, 485-492.
https://doi.org/10.1016/j.phpro.2014.07.070
[8]  Dang, J. and Zhao, J. (2019) Influence of Waste Clay Bricks as Fine Aggregate on the Mechanical and Microstructural Properties of Concrete. Construction and Building Materials, 228, Article 116757.
https://doi.org/10.1016/j.conbuildmat.2019.116757
[9]  Menadi, B., Kenai, S., Khatib, J. and Aït-Mokhtar, A. (2009) Strength and Durability of Concrete Incorporating Crushed Limestone Sand. Construction and Building Materials, 23, 625-633.
https://doi.org/10.1016/j.conbuildmat.2008.02.005
[10]  Cabrera, O.A., Traversa, L.P. and Ortega, N.F. (2010) Fluidez de morteros cementíceos con arenas machacadas. Materiales de Construcción, 60, 115-130.
https://doi.org/10.3989/mc.2010.50909
[11]  Al-Ameeri, A. (2012) Using Different Types of Fine Aggregate to Produce High Strength Concrete. International Journal of Arts & Sciences, 5, 187-196.
[12]  Benabed, B., Kadri, E., Azzouz, L. and Kenai, S. (2012) Properties of Self-Compacting Mortar Made with Various Types of Sand. Cement and Concrete Composites, 34, 1167-1173.
https://doi.org/10.1016/j.cemconcomp.2012.07.007
[13]  Benachour, Y., Skoczylas, F., Houari, H., et al. (2008) Étude expérimentale des mortiers fortement charges en fillers calcaires. Sciences & technologie b, université mentouri Constantine Algérie, 28, 53-59.
[14]  Lawrence, P. (2000) On the Activity of Fly Ash and Chemically Inert Mineral Additions in Cementitious Materials. PhD Thesis, Paul Sabatier University.
[15]  Michel (2007) Influence of Physic-Chemical Characteristics of Limestone Fillers on Fresh and Hardened Mortar Performances. Proceedings of the International RILEM Symposium on SCC, Ghent, 3-5 September 2007, 205-210.
[16]  Emmanuel, E., et al. (2021) Mechanical and Mineralogical Characteristics of Mortars with Crushed and River Sand. Proceedings of the 13th Fib Internationnal PhD Symposium in Civil Engineering, Marne-la-vallée, 6-28 August 2020, 1-9.
[17]  Khalil, B., et al. (2016) Evaluation of Secondary Effects of Admixtures on Concrete Properties.
[18]  Nordmeyer, H. (2007) Water-Rebellent Performance in Pozzolanic and Traditional Mortars. 2007 World of Coal Ash, Covington, May 7-10 2007, 1-15.
[19]  Edwige, N. (2010) Cementitious Binder/Superplasticizer Compatibility and Incompatibility. PhD Thesis, University of Luxembourg.
[20]  Shi, J., Tan, J., Liu, B., Chen, J., Dai, J. and He, Z. (2021) Experimental Study on Full-Volume Slag Alkali-Activated Mortars: Air-Cooled Blast Furnace Slag versus Machine-Made Sand as Fine Aggregates. Journal of Hazardous Materials, 403, Article 123983.
https://doi.org/10.1016/j.jhazmat.2020.123983
[21]  Liu, B., Qin, J., Shi, J., Jiang, J., Wu, X. and He, Z. (2021) New Perspectives on Utilization of CO2 Sequestration Technologies in Cement-Based Materials. Construction and Building Materials, 272, Article 121660.
https://doi.org/10.1016/j.conbuildmat.2020.121660
[22]  Liang, C., Pan, B., Ma, Z., He, Z. and Duan, Z. (2020) Utilization of CO2 Curing to Enhance the Properties of Recycled Aggregate and Prepared Concrete: A Review. Cement and Concrete Composites, 105, Article 103446.
https://doi.org/10.1016/j.cemconcomp.2019.103446
[23]  Suescum-Morales, D., Kalinowska-Wichrowska, K., Fernández, J.M. and Jiménez, J.R. (2021) Accelerated Carbonation of Fresh Cement-Based Products Containing Recycled Masonry Aggregates for CO2 Sequestration. Journal of CO2 Utilization, 46, Article 101461.
https://doi.org/10.1016/j.jcou.2021.101461
[24]  Scrivener, K.L., John, V.M. and Gartner, E.M. (2018) Eco-Efficient Cements: Potential Economically Viable Solutions for a Low-CO2 Cement-Based Materials Industry. Cement and Concrete Research, 114, 2-26.
https://doi.org/10.1016/j.cemconres.2018.03.015
[25]  Zhang, D., Ghouleh, Z. and Shao, Y. (2017) Review on Carbonation Curing of Cement-Based Materials. Journal of CO2 Utilization, 21, 119-131.
https://doi.org/10.1016/j.jcou.2017.07.003
[26]  Merino-Lechuga, A.M., González-Caro, Á., Fernández-Ledesma, E., Jiménez, J.R., Fernández-Rodríguez, J.M. and Suescum-Morales, D. (2023) Accelerated Carbonation of Vibro-Compacted Porous Concrete for Eco-Friendly Precast Elements. Materials, 16, Article 2995.
https://doi.org/10.3390/ma16082995
[27]  NF EN 933-8 (1999) Évaluation Des Fines-Équivalent de Sable, 4 p.
[28]  ASTM C494 Standard Specification for Chemical Admixtures for Concrete Type G Water-Reducing, High Range, and Retarding Admixtures.
[29]  NF EN 934-2+A1, August 2012, Admixtures for Concrete, Mortar and Grout-Part 2: Concrete Admixtures-Definitions, Requirements, Conformity, Marking and Labelling.
[30]  AFPC-AFREM (1997) Essai de carbonatation accélérée, Mesure de l’épaisseur de béton carbonaté, Mode opératoire recommandé par l’AFREM. Compte rendu des journées techniques AFPC-AFREM Durabilité des bétons, Toulouse, 11-12 Décembre 1997, 153-158.
[31]  Baroghel-Bouny, V., Chaussadent, T., Croquette, G., Divet, L., Gawséwitch, J., Godin, J., Henry, D., Platret, G. and Villain, G. (2002) Caractéristiques microstructurales et propriétés relatives à la durabilité des bétons Méthodes de mesures et d’essais de laboratoire, Méthodes d’essai n58 dans : Techniques et Méthodes des Laboratoires des Ponts et Chaussées.
[32]  NF XP 18-458 (2022) Essai pour béton durci-Essai de carbonatation accélérée-Mesure de l’épaisseur de béton carbonate, 6 p.
[33]  NF P18-459 (2022) Béton-Essai pour béton durci-Essai de porosité et de masse volumique, 7 p.
[34]  Zhang, D. and Li, K. (2019) Concrete Gas Permeability from Different Methods: Correlation Analysis. Cement and Concrete Composites, 104, Article 103379.
https://doi.org/10.1016/j.cemconcomp.2019.103379
[35]  Scrivener, K.L. (2004) Backscattered Electron Imaging of Cementitious Microstructures: Understanding and Quantification. Cement and Concrete Composites, 26, 935-945.
https://doi.org/10.1016/j.cemconcomp.2004.02.029
[36]  Rafaï, N., Hornain, H., Villain, G., Baroghel Bouny, V., Platret, G. and Chaussadent, T. (2002) Comparaison et validité des méthodes de mesure de la carbonatation. Revue française de génie civil, 6, 251-274.
https://doi.org/10.3166/rfgc.6.251-274
[37]  Rahman, A.A. and Glasser, F.P. (1989) Comparative Studies of the Carbonation of Hydrated Cements. Advances in Cement Research, 2, 49-54.
https://doi.org/10.1680/adcr.1989.2.6.49
[38]  Parrott, L.J. and Killoh, D.C. (1989) Carbonation in a 36 Year Old, In-Situ Concrete. Cement and Concrete Research, 19, 649-656.
https://doi.org/10.1016/0008-8846(89)90017-3
[39]  NBN EN 1992-1-1 Eurocode 2-Calcul des structures en béton-Partie 1-1: règles générales et règles pour les bâtiments (P18-711-1 :2005-10, NA :2016-03, A1 :2015-02).
[40]  Viet, D.N. (2015) Contribution à l’approche probabiliste de la durabilité des structures en béton soumises à la carbonatation. Thèse de doctorat à l’Institut National des Sciences Appliquées de Toulouse.
[41]  Thiery, M. (2005) Modélisation de la carbonatation atmosphérique des matériaux cimentaires, prise en compte des effets cinétiques et des modifications microstructurales et hydriques. Thèse de doctorat, Central Laboratory Ponts Et Chaussees.
[42]  Gagné, R. (2000) GCI 714—Durabilité et réparations du béton. Université de Sherbrooke Centre de Longueuil.
[43]  Vincent, P. (2001) Influence d’un endommagement mécanique sur la perméabilité et sur la diffusivité hydrique des bétons. Thèse de Doctorat, université de Nantes.
[44]  Abbas, A., Carcasses, M. and Ollivier, J.P. (2000) The Importance of Gas Permeability in Addition to the Compressive Strength of Concrete. Magazine of Concrete Research, 52, 1-6.
https://doi.org/10.1680/macr.2000.52.1.1
[45]  Jaafar, W. (2003) Influence de la carbonatation sur la porosité et la perméabilité des bétons, Rapport de stage LCPC.
[46]  Chaussadent, T. (1999) Etat des lieux et réflexions sur la carbonatation du béton armé. Etudes et recherches des LPC, série ouvrages d’Art OA29, Edité par LCPC Paris.
[47]  Abdias, M.W.M., Blanche, M.M., Nana, U.J.P., Abanda, H.F., François, N. and Chrispin, P. (2023) River Sand Characterization for Its Use in Concrete: A Revue. Open Journal of Civil Engineering, 13, 353-366.
https://doi.org/10.4236/ojce.2023.132027
[48]  Che, P.B., Emmanuel, Y.B. and Billong, N. (2022) Equal Volumes of Sand and Gravel Concrete Mix Ratios in Cameroon and Its Effect on Concrete Compressive Strength. World Journal of Engineering and Technology, 10, 539-549.
https://doi.org/10.4236/wjet.2022.103034

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133