|
1株桑叶内生促生细菌的筛选及对小麦幼苗的促生机制研究
|
Abstract:
为获得植物内生促生菌资源,本文从桑树(Morus alba L.)叶片中分离筛选促生细菌,进行分类鉴定,检测其促生特性,探讨其对小麦(Triticum aestivum L.)的促生机制。结果显示,常规平板法从四个桑树品种叶片中分离出13株内生细菌,其中品种9703中分离的编号AG-2菌株表现出良好的促生效果。结合形态学和16S rRNA序列分析鉴定菌株AG-2为多黏类芽孢杆菌(Paenibacillus polymyxa)。平板定性法和高效液相色谱–串联质谱法(HPLC-MS/MS)分析表明菌株AG-2具有产有机酸、蛋白酶、纤维素酶、铁载体以及吲哚乙酸(IAA)、异戊烯基腺嘌呤(IP)和异戊烯基腺嘌呤核苷(IPA)的促生特性。室内幼苗浇灌试验结果表明,与对照组相比,菌株AG-2处理小麦幼苗12 d后,苗鲜重、根鲜重和单株总鲜重显著增加(P < 0.05),增长率分别为12.16%、32.39%和24.68%;根冠比和根系活力变化不明显;叶片叶绿素含量和类胡萝卜素含量分别增加了180%和15.79% (P < 0.05);叶片可溶性糖含量、脯氨酸含量和丙二醛(MDA)含量变化不明显,但可溶性蛋白含量增加显著(P < 0.05);叶片超氧化物歧化酶(SOD)、苯丙氨酸解氨酶(PAL)和多酚氧化酶(PPO)活性显著增强(P < 0.05),分别较对照组增加了113.14%、17.68%和68.24%。菌株AG-2能够有效促进小麦幼苗生长,具有开发成农业用微生物菌株的潜力。
In order to obtain endophytic bacteria to promote plants growth, strains were isolated and screened from mulberry leaves. Based on identification of the strain and analysis of the growth-promoting characteristics, the growth-promoting mechanism on wheat was explored. Results showed that 13 endophytic bacteria were isolated from the leaves of four mulberry varieties using conventional plate method, in which strain AG-2 from variety 9703 showed excellent growth-promoting effects. Through morphology and 16S rRNA sequence analysis, strain AG-2 was identified as Paenibacillus polymyxa. Plate qualitative analysis and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis showed that strain AG-2 had the promoting properties of producing organic acid, protease, cellulase, siderophore, as well as indole-3-acetic acid (IAA), isopentenyladenine (IP), and isopentenyladenine nucleoside (IPA). Compared with the control group, after 12 days of irrigating wheat seedlings in greenhouse, shoot fresh weight, root fresh weight and total fresh weight per plant significantly increased (P < 0.05), with growth rates of 12.16%, 32.39%, and 24.68%, respectively. Differences in root/shoot ratio and root vitality were not significant. Contents of chlorophyll and carotenoid in the leaves increased significantly (P < 0.05) by 180% and 15.79%, respectively. Changes in soluble sugar content, proline content, and malondialdehyde (MDA) content in leaves were not significant, but soluble protein content significantly increased (P < 0.05). In addition, activities of superoxide dismutase (SOD), phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO) enhanced
[1] | Liu, J., Ouyang, X., Shen, J., Li, Y., Sun, W., Jiang, W., et al. (2020) Nitrogen and Phosphorus Runoff Losses Were Influenced by Chemical Fertilization but Not by Pesticide Application in a Double Rice-Cropping System in the Subtropical Hilly Region of China. Science of the Total Environment, 715, Article 136852. https://doi.org/10.1016/j.scitotenv.2020.136852 |
[2] | 蔡佳佩, 朱坚, 彭华, 等. 有机肥施用对田面水氮磷流失风险的影响[J]. 环境科学研究, 2020, 33(1): 210-217. |
[3] | 武杞蔓, 张金梅, 李玥莹, 等. 有益微生物菌肥对农作物的作用机制研究进展[J]. 生物技术通报, 2021, 37(5): 221-230. |
[4] | Sivasakthi, S., Usharani, G. and Saranraj, P. (2014) Biocontrol Potentiality of Plant Growth Promoting Bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A Review. African Journal of Agricultural Research, 9, 1265-1277. https://doi.org/10.5897/AJAR2013.7914 |
[5] | 穆文强, 康慎敏, 李平兰. 根际促生菌对植物的生长促进作用及机制研究进展[J]. 生命科学, 2022, 34(2): 118-127. |
[6] | Wang, Y., Li, W., Du, B. and Li, H. (2021) Effect of Biochar Applied with Plant Growth-Promoting Rhizobacteria (PGPR) on Soil Microbial Community Composition and Nitrogen Utilization in Tomato. Pedosphere, 31, 872-881. https://doi.org/10.1016/s1002-0160(21)60030-9 |
[7] | 秦利均, 杨永柱, 杨星勇. 土壤溶磷微生物溶磷、解磷机制研究进展[J]. 生命科学研究, 2019, 23(1): 59-64. |
[8] | Wei, M., Liu, X., He, Y., Xu, X., Wu, Z., Yu, K., et al. (2020) Biochar Inoculated with Pseudomonas putida Improves Grape (Vitis vinifera L.) Fruit Quality and Alters Bacterial Diversity. Rhizosphere, 16, Article 100261. https://doi.org/10.1016/j.rhisph.2020.100261 |
[9] | Jinal, H.N., Gopi, K., Prittesh, P., Kartik, V.P. and Amaresan, N. (2019) Phytoextraction of Iron from Contaminated Soils by Inoculation of Iron-Tolerant Plant Growth-Promoting Bacteria in Brassica juncea L. Czern. Environmental Science and Pollution Research, 26, 32815-32823. https://doi.org/10.1007/s11356-019-06394-2 |
[10] | Kudoyarova, G., Arkhipova, T., Korshunova, T., Bakaeva, M., Loginov, O. and Dodd, I.C. (2019) Phytohormone Mediation of Interactions between Plants and Non-Symbiotic Growth Promoting Bacteria under Edaphic Stresses. Frontiers in Plant Science, 10, Article 1368. https://doi.org/10.3389/fpls.2019.01368 |
[11] | Park, Y.G., Mun, B.G., Kang, S.M., Hussain, A. and Yun, B.-W. (2017) Bacillus aryabhattai SRB02 Tolerates Oxidative and Nitrosative Stress and Promotes the Growth of Soybean by Modulating the Production of Phytohormones. PLOS ONE, 12, e0173203. https://doi.org/10.1371/journal.pone.0173203 |
[12] | Lee, J.Y., Shim, J.M., Yao, Z., Liu, X., Lee, K.W., Kim, H., et al. (2016) Antimicrobial Activity of Bacillus amyloliquefaciens EMD17 Isolated from Cheonggukjang and Potential Use as a Starter for Fermented Soy Foods. Food Science and Biotechnology, 25, 525-532. https://doi.org/10.1007/s10068-016-0073-z |
[13] | 张银翠, 姚拓, 赵桂琴, 等. 耐盐促生菌筛选鉴定及对盐胁迫燕麦生长的影响[J]. 草地学报, 2021, 29(12): 2645-2652. |
[14] | Sun, L., Qiu, F., Zhang, X., Dai, X., Dong, X. and Song, W. (2007) Endophytic Bacterial Diversity in Rice (Oryza sativa L.) Roots Estimated by 16S rDNA Sequence Analysis. Microbial Ecology, 55, 415-424. https://doi.org/10.1007/s00248-007-9287-1 |
[15] | Romero, F.M., Marina, M. and Pieckenstain, F.L. (2014) The Communities of Tomato (Solanum lycopersicum L.) Leaf Endophytic Bacteria, Analyzed by 16s-Ribosomal RNA Gene Pyrosequencing. FEMS Microbiology Letters, 351, 187-194. https://doi.org/10.1111/1574-6968.12377 |
[16] | Kandel, S.L., Herschberger, N., Kim, S.H. and Doty, S.L. (2015) Diazotrophic Endophytes of Poplar and Willow for Growth Promotion of Rice Plants in Nitrogen‐Limited Conditions. Crop Science, 55, 1765-1772. https://doi.org/10.2135/cropsci2014.08.0570 |
[17] | Rangeshwaran, R., Wasnikar, A., Prasad, R., et al. (2002) Isolation of Endophytic Bacteria for Biological Control of Wilt Pathogens. Journal of Biological Control, 16(2): 125-133. |
[18] | 冯宝珍, 李培谦, 刘缙, 等. 番茄内生菌的分离鉴定及菌株FQ-G3抗病促生特性[J]. 微生物学报, 2024, 64(1): 208-219. |
[19] | 王彦譞, 魏靖宇, 李惠琳, 等. 红掌拮抗内生菌Y-54的分离、鉴定及其生防作用研究[J]. 植物保护学报, 2023, 50(5): 1327-1335. |
[20] | Zamioudis, C., Mastranesti, P., Dhonukshe, P., Blilou, I. and Pieterse, C.M.J. (2013) Unraveling Root Developmental Programs Initiated by Beneficial Pseudomonas spp. Bacteria. Plant Physiology, 162, 304-318. https://doi.org/10.1104/pp.112.212597 |
[21] | 王彪, 潘英豪, 侯佳蓝, 等. 一种桑树细菌性病原内生拮抗细菌的筛选、鉴定及其生防活性[J]. 微生物前沿, 2019, 8(3): 110-120. |
[22] | Sunitha, V.H., Devi, D.N. and Srinivas, C. (2013) Extracellular Enzymatic Activity of Endophytic Fungal Strains Iso-lated from Medicinal Plants. World Journal of Agricultural Sciences, 9, 1-9. |
[23] | 陈伟, 舒健虹, 陈莹, 等. 黑麦草根际铁载体产生菌WN-H3的分离鉴定及其产铁载体培养条件的优化[J]. 生物技术通报, 2016, 32(10): 219-226. |
[24] | Pan, X., Welti, R. and Wang, X. (2010) Quantitative Analysis of Major Plant Hormones in Crude Plant Extracts by High-Performance Liquid Chromatography-Mass Spectrometry. Nature Protocols, 5, 986-992. https://doi.org/10.1038/nprot.2010.37 |
[25] | 刘鹏, 毕江涛, 罗成科, 等. 耐盐菌对盐胁迫下水稻种子萌发及幼苗生长的影响[J]. 农业环境科学学报, 2022, 41(2): 246-256. |
[26] | Zhang, W., Wu, J., Weng, L., Zhang, H., Zhang, J. and Wu, A. (2020) An Improved Phenol-Sulfuric Acid Method for the Determination of Carbohydrates in the Presence of Persulfate. Carbohydrate Polymers, 227, Article 115332. https://doi.org/10.1016/j.carbpol.2019.115332 |
[27] | Hatzoglou, A., Prekezes, J., Tsami, M. and Castanas, E. (1992) Protein Measurement of Particulate and Solubilized Ovine Liver Membranes. Annals of Clinical Biochemistry: International Journal of Laboratory Medicine, 29, 659-662. https://doi.org/10.1177/000456329202900607 |
[28] | Chen, T. and Zhang, B. (2016) Measurements of Proline and Malondialdehyde Content and Antioxidant Enzyme Activities in Leaves of Drought Stressed Cotton. Bio-Protocol, 6, e1913. https://doi.org/10.21769/bioprotoc.1913 |
[29] | Vicente, A.R., Martínez, G.A., Chaves, A.R. and Civello, P.M. (2006) Effect of Heat Treatment on Strawberry Fruit Damage and Oxidative Metabolism during Storage. Postharvest Biology and Technology, 40, 116-122. https://doi.org/10.1016/j.postharvbio.2005.12.012 |
[30] | Xu, W., Peng, X., Luo, Y., Wang, J., Guo, X. and Huang, K. (2009) Physiological and Biochemical Responses of Grapefruit Seed Extract Dip on ‘Redglobe’ Grape. LWT-Food Science and Technology, 42, 471-476. https://doi.org/10.1016/j.lwt.2008.09.002 |
[31] | Zhou, P., Smith, N.L. and Lee, C.Y. (1993) Potential Purification and Some Properties of Monroe Apple Peel Polyphenol Oxidase. Journal of Agricultural and Food Chemistry, 41, 532-536. https://doi.org/10.1021/jf00028a004 |
[32] | Sahu, P.K., Singh, S., Gupta, A., Singh, U.B., Brahmaprakash, G.P. and Saxena, A.K. (2019) Antagonistic Potential of Bacterial Endophytes and Induction of Systemic Resistance against Collar Rot Pathogen Sclerotium rolfsii in Tomato. Biological Control, 137, Article 104014. https://doi.org/10.1016/j.biocontrol.2019.104014 |
[33] | 张锦锦, 孙雨婷, 郭烨, 等. 桑树内生菌的生物活性及应用前景[J]. 河北农业科学, 2023, 27(1): 85-90, 98. |
[34] | 孙萌. 铁载体高产菌株的ARTP选育及其铁载体产量提高机理的初步分析[D]: [硕士学位论文]. 无锡: 江南大学, 2017. |
[35] | 张军, 田子罡, 王建华, 等. 有机酸抑菌分子机理研究进展[J]. 畜牧兽医学报, 2011, 42(3): 323-328. |
[36] | Gaonkar, S.K. and Furtado, I.J. (2020) Characterization of Extracellular Protease from the Haloarcheon Halococcus sp. Strain GUGFAWS-3 (MF425611). Current Microbiology, 77, 1024-1034. https://doi.org/10.1007/s00284-020-01896-6 |
[37] | Tonnessen, B.W., Manosalva, P., Lang, J.M., Baraoidan, M., Bordeos, A., Mauleon, R., et al. (2014) Rice Phenylalanine Ammonia-Lyase Gene OsPAL4 Is Associated with Broad Spectrum Disease Resistance. Plant Molecular Biology, 87, 273-286. https://doi.org/10.1007/s11103-014-0275-9 |
[38] | Jia, H., Zhao, P., Wang, B., Tariq, P., Zhao, F., Zhao, M., et al. (2015) Overexpression of Polyphenol Oxidase Gene in Strawberry Fruit Delays the Fungus Infection Process. Plant Molecular Biology Reporter, 34, 592-606. https://doi.org/10.1007/s11105-015-0946-y |
[39] | 张爱梅, 吴菊艳, 韩雪英, 等. 沙棘根瘤内生细菌中抑菌促生菌株的筛选和鉴定[J]. 微生物学通报, 2019, 46(5): 1041-1051. |
[40] | Rajkumar, M., Ae, N. and Freitas, H. (2009) Endophytic Bacteria and Their Potential to Enhance Heavy Metal Phytoextraction. Chemosphere, 77, 153-160. https://doi.org/10.1016/j.chemosphere.2009.06.047 |
[41] | 周璇, 宋凤斌. 不同种植方式下玉米叶片叶绿素和可溶性蛋白含量变化[J]. 土壤与作物, 2012, 1(1): 41-49. |
[42] | 刘方春, 马海林, 马丙尧, 等. 干旱环境下接种根际促生细菌对核桃苗光合特性的影响[J]. 林业科学, 2015, 51(7): 84-90. |
[43] | Singh, R.P. and Jha, P.N. (2017) The PGPR Stenotrophomonas maltophilia SBP-9 Augments Resistance against Biotic and Abiotic Stress in Wheat Plants. Frontiers in Microbiology, 8, Article 1945. https://doi.org/10.3389/fmicb.2017.01945 |
[44] | Sharma, I.P. and Sharma, A.K. (2016) Physiological and Biochemical Changes in Tomato Cultivar PT-3 with Dual Inoculation of Mycorrhiza and PGPR against Root-Knot Nematode. Symbiosis, 71, 175-183. https://doi.org/10.1007/s13199-016-0423-x |