全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SCAPS 1D Simulation of a Lead-Free Perovskite Photovoltaic Solar Cell Using Hematite as Electron Transport Layer

DOI: 10.4236/mnsms.2024.144006, PP. 97-106

Keywords: CH3NH3SnI3, α-Fe2O3, SCAPS 1D, Thickness, Doping Defect, Optimisation

Full-Text   Cite this paper   Add to My Lib

Abstract:

In recent years, there has been remarkable progress in the performance of metal halide perovskite solar cells. Studies have shown significant interest in lead-free perovskite solar cells (PSCs) due to concerns about the toxicity of lead in lead halide perovskites. CH3NH3SnI3 emerges as a viable alternative to CH3NH3PbX3. In this work, we studied the effect of various parameters on the performance of lead-free perovskite solar cells using simulation with the SCAPS 1D software. The cell structure consists of α-Fe2O3/CH3NH3SnI3/PEDOT: PSS. We analyzed parameters such as thickness, doping, and layer concentration. The study revealed that, without considering other optimized parameters, the efficiency of the cell increased from 22% to 35% when the perovskite thickness varied from 100 to 1000 nm. After optimization, solar cell efficiency reaches up to 42%. The optimization parameters are such that, for example, for perovskite: the layer thickness is 700 nm, the doping concentration is 1020 and the defect density is 1013 cm3, and for hematite: the thickness is 5 nm, the doping concentration is 1022 and the defect concentration is 1011 cm3. These results are encouraging because they highlight the good agreement between perovskite and hematite when used as the active and electron transport layers, respectively. Now, it is still necessary to produce real, viable photovoltaic solar cells with the proposed material layer parameters.

References

[1]  Wang, J. and Azam, W. (2024) Natural Resource Scarcity, Fossil Fuel Energy Consumption, and Total Greenhouse Gas Emissions in Top Emitting Countries. Geoscience Frontiers, 15, Article 101757.
https://doi.org/10.1016/j.gsf.2023.101757
[2]  Kanna, V.I., Roseline, S., Balamurugan, K., Jeeva, S. and Augastin Santhiyagu, I. (2024) The Effects of Greenhouse Gas Emissions on Global Warming. In: Rahimpour, M.R., Ed., Encyclopedia of Renewable Energy, Sustainability and the Environment, Elsevier, 143-154.
https://doi.org/10.1016/b978-0-323-93940-9.00216-4
[3]  Kocak, E., Ulug, E.E. and Oralhan, B. (2023) The Impact of Electricity from Renewable and Non-Renewable Sources on Energy Poverty and Greenhouse Gas Emissions (GHGs): Empirical Evidence and Policy Implications. Energy, 272, Article 127125.
https://doi.org/10.1016/j.energy.2023.127125
[4]  Khan, A.A., Reichel, C., Molina, P., Friedrich, L., Subasi, D.M., Neuhaus, H., et al. (2024) Global Warming Potential of Photovoltaics with State-of-the Art Silicon Solar Cells: Influence of Electricity Mix, Installation Location and Lifetime. Solar Energy Materials and Solar Cells, 269, Article 112724.
https://doi.org/10.1016/j.solmat.2024.112724
[5]  Babayigit, A., Boyen, H. and Conings, B. (2018) Environment versus Sustainable Energy: The Case of Lead Halide Perovskite-Based Solar Cells. MRS Energy & Sustainability, 5, Article No. 15.
https://doi.org/10.1557/mre.2017.17
[6]  Qiu, Z. and Li, P. (2019) Solar Energy Resource and Its Global Distribution. In: Zhao, X. and Ma, X., Eds., Advanced Energy Efficiency Technologies for Solar Heating, Cooling and Power Generation, Springer International Publishing, 1-30.
https://doi.org/10.1007/978-3-030-17283-1_1
[7]  Goel, M., Verma, V.S. and Tripathi, N.G. (2022) Sun: Unlimited Energy Resource on Earth. In: Goel, M., Verma, V.S. and Tripathi, N.G., Eds., Solar Energy, Springer, 15-26.
https://doi.org/10.1007/978-981-19-2099-8_2
[8]  Hajji, M., Ajili, M., Charrada, G., Jebbari, N., Garcia-Loureiro, A. and Turki Kamoun, N. (2024) Comprehensive Study on the Physical Properties of CuO-ZnO Thin Films: Insights into Solar Cell Simulation. Optical Materials, 155, Article 115887.
https://doi.org/10.1016/j.optmat.2024.115887
[9]  Ghahremanirad, E., Olyaee, S., Nejand, B.A., Nazari, P., Ahmadi, V. and Abedi, K. (2018) Improving the Performance of Perovskite Solar Cells Using Kesterite Mesostructure and Plasmonic Network. Solar Energy, 169, 498-504.
https://doi.org/10.1016/j.solener.2018.05.012
[10]  Ngulezhu, T., Abdulkarim, A.S., Rawat, S., Singh, R.C., Singh, P.K., Singh, D., et al. (2024) Stable Lead Free Perovskite Solar Cells Based on Bismuth Doped Perovskite Materials. Chemical Physics Impact, 9, Article 100689.
https://doi.org/10.1016/j.chphi.2024.100689
[11]  Oyedele, S.O., Soucase, B.M. and Aka, B. (2016) Numerical Simulation and Performance Optimization of Cu(In, Ga)Se2 Solar Cells. IOSR Journal of Applied Physics, 8, 1-11.
https://doi.org/10.9790/4861-0804040111
[12]  Li, M., Zhou, J., Tan, L., Li, H., Liu, Y., Jiang, C., et al. (2022) Multifunctional Succinate Additive for Flexible Perovskite Solar Cells with More than 23% Power-Conversion Efficiency. The Innovation, 3, Article 100310.
https://doi.org/10.1016/j.xinn.2022.100310
[13]  Coulibaly, A.B., Oyedele, S.O., Kre, N.R. and Aka, B. (2019) Comparative Study of Lead-Free Perovskite Solar Cells Using Different Hole Transporter Materials. Modeling and Numerical Simulation of Material Science, 9, 97-107.
https://doi.org/10.4236/mnsms.2019.94006
[14]  Li, S., Cao, Y., Li, W. and Bo, Z. (2021) A Brief Review of Hole Transporting Materials Commonly Used in Perovskite Solar Cells. Rare Metals, 40, 2712-2729.
https://doi.org/10.1007/s12598-020-01691-z
[15]  Abdellah, I.M., Chowdhury, T.H., Lee, J., Islam, A., Nazeeruddin, M.K., Gräetzel, M., et al. (2021) Facile and Low-Cost Synthesis of a Novel Dopant-Free Hole Transporting Material that Rivals Spiro-OMeTAD for High Efficiency Perovskite Solar Cells. Sustainable Energy & Fuels, 5, 199-211.
https://doi.org/10.1039/d0se01323d
[16]  Raj, K. and Das, A.P. (2023) Lead Pollution: Impact on Environment and Human Health and Approach for a Sustainable Solution. Environmental Chemistry and Ecotoxicology, 5, 79-85.
https://doi.org/10.1016/j.enceco.2023.02.001
[17]  Fatima, Q., Haidry, A.A., Zhang, H., El Jery, A. and Aldrdery, M. (2024) A Critical Review on Advancement and Challenges in Using TiO2 as Electron Transport Layer for Perovskite Solar Cell. Materials Today Sustainability, 27, Article 100857.
https://doi.org/10.1016/j.mtsust.2024.100857
[18]  Wu, J. and Huang, Q. (2022) Properties of TiO2 Film Prepared by Anodization as Electron Transport Layer for Perovskite Solar Cells. International Journal of Electrochemical Science, 17, Article 220223.
https://doi.org/10.20964/2022.02.26
[19]  Cai, J., Tang, X., Zhong, S., Li, Y., Wang, Y., Liao, Z., et al. (2023) Elucidation the Role of Co-MOF on Hematite for Boosting the Photoelectrochemical Performance toward Water Oxidation. International Journal of Hydrogen Energy, 48, 12342-12353.
https://doi.org/10.1016/j.ijhydene.2022.12.165
[20]  Gartner, M., Crisan, M., Jitianu, A., Scurtu, R., Gavrila, R., Oprea, I., et al. (2003) Spectroellipsometric Characterization of Multilayer Sol-Gel Fe2O3 Films. Journal of Sol-Gel Science and Technology, 26, 745-748.
https://doi.org/10.1023/a:1020706423230
[21]  Waychunas, G.A., Kim, C.S. and Banfield, J.F. (2005) Nanoparticulate Iron Oxide Minerals in Soils and Sediments: Unique Properties and Contaminant Scavenging Mechanisms. Journal of Nanoparticle Research, 7, 409-433.
https://doi.org/10.1007/s11051-005-6931-x
[22]  Burgelman, M., Nollet, P. and Degrave, S. (2000) Modelling Polycrystalline Semiconductor Solar Cells. Thin Solid Films, 361, 527-532.
https://doi.org/10.1016/s0040-6090(99)00825-1
[23]  Valeti, N.J., Prakash, K. and Singha, M.K. (2023) Numerical Simulation and Optimization of Lead Free CH3NH3SNI3 Perovskite Solar Cell with CuSbS2 as HTL Using SCAPS 1D. Results in Optics, 12, Article 100440.
https://doi.org/10.1016/j.rio.2023.100440
[24]  Vaish, S. and Kumar Dixit, S. (2023) Study the Effect of Total Defect Density Variation in Absorbing Layer on the Power Conversion Efficiency of Lead Halide Perovskite Solar Cell Using SCAPS-1D Simulation Tool. Materials Today: Proceedings, 91, 17-20.
https://doi.org/10.1016/j.matpr.2023.05.374
[25]  Mandadapu, U. (2017) Simulation and Analysis of Lead Based Perovskite Solar Cell Using SCAPS-1D. Indian Journal of Science and Technology, 10, 1-8.
https://doi.org/10.17485/ijst/2017/v11i10/110721
[26]  Nithya, K.S. and Sudheer, K.S. (2020) Numerical Modelling of Non-Fullerene Organic Solar Cell with High Dielectric Constant ITIC-OE Acceptor. Journal of Physics Communications, 4, Article 025012.
https://doi.org/10.1088/2399-6528/ab772a
[27]  Oliver, R.D.J., Caprioglio, P., Peña-Camargo, F., et al. (2021) Understanding and Suppressing Nonradiative Losses in Methylammonium-Free Wide Bandgap Perovskite Solar Cells. Energy & Environmental Science, 15, 714-726.
https://doi.org/10.1039/D1EE02650J
[28]  Lazemi, M., Asgharizadeh, S. and Bellucci, S. (2018) A Computational Approach to Interface Engineering of Lead-Free CH3NH3SnI3 Highly-Efficient Perovskite Solar Cells. Physical Chemistry Chemical Physics, 20, 25683-25692.
https://doi.org/10.1039/c8cp03660h
[29]  Hervé, J., Tchognia, N., Hartiti, B., Ndjaka, J.-M. and Ridah, A. (2015) Performances des cellules solaires à base de Cu2ZnSnS4 (CZTS): Une analyse par simulations numériques via le simulateur SCAPS. Afrique Sciences, 11, 16-23.
[30]  Pramanik, M.B., Al Rakib, M.A., Siddik, M.A. and Bhuiyan, S. (2024) Doping Effects and Relationship between Energy Band Gaps, Impact of Ionization Coefficient and Light Absorption Coefficient in Semiconductors. European Journal of Engineering and Technology Research, 9, 10-15.
https://doi.org/10.24018/ejeng.2024.9.1.3118
[31]  Saikia, D., Das, C., Chetia, A., Betal, A. and Sahu, S. (2024) Numerical Simulation of All Inorganic CsPbiBr2 Perovskite Solar Cells with Diverse Charge Transport Layers Using DFT and SCAPS-1D Frameworks. Physica Scripta, 99, Article 095946.
https://doi.org/10.1088/1402-4896/ad6aa8
[32]  Soro, D., Sylla, A., Gbané, A., Franck, B., Guaita, J., Bouich, A., Toure, S. and Marí, B. (2024) Modeling and Simulation of an Organic Photovoltaic Cell: ITO/MoO3/CARAPA/PCBM/Alq3/Al with SCAPS. Modeling and Numerical Simulation of Material Science, 14, 79-96.
https://doi.org/10.4236/mnsms.2024.143005
[33]  Ashok, A., Cano, F.J., Reyes-Vallejo, O., Hernández-Rodríguez, Y.M., Cigarroa-Mayorga, O.E., Vega-Pérez, J., et al. (2023) SCAPS Simulation on CIGSe Thin Film Solar Cells: Effect of the Defects. 2023 20th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, 25-27 October 2023, 1-6.
https://doi.org/10.1109/cce60043.2023.10332898
[34]  Touafek, N. and Mahamdi, R. (2014) Excess Defects at the CdS/CIGS Interface Solar Cells. Chalcogenide Letters, 11, 589-596.
[35]  Lee, Y.M., Maeng, I., Park, J., Song, M., Yun, J., Jung, M., et al. (2018) Comprehensive Understanding and Controlling the Defect Structures: An Effective Approach for Organic-Inorganic Hybrid Perovskite-Based Solar-Cell Application. Frontiers in Energy Research, 6, Article 128.
https://doi.org/10.3389/fenrg.2018.00128

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133