全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Wavelet Multiview-Based Hybrid Deep Learning Model for Forecasting El Ni?o-Southern Oscillation Cycles

DOI: 10.4236/acs.2024.144027, PP. 450-473

Keywords: El Ni?o-Southern Oscillation (ENSO), Autoencoders, Discrete Wavelet Transform (DWT), Convolutional Neural Network (CNN), Support Vector Regression (SVR)

Full-Text   Cite this paper   Add to My Lib

Abstract:

The El Ni?o-Southern Oscillation (ENSO) is a significant climate phenomenon with far-reaching impacts on global weather patterns, ecosystems, and economies. This study aims to enhance ENSO forecasting with the Extended Reconstruction Sea Surface Temperature v5 (ERSSTv5) climate model. The M-band discrete wavelet transforms (DWT) are utilized to capture multi-scale temporal and spatial features effectively. Long-short term memory (LSTM) autoencoders are also used to capture significant spatial and temporal patterns in sea surface temperature (SST) anomaly data. Deep learning techniques such as the convolutional neural networks (CNN) are used with non-image and image time series data. We also employ parallel computing in a various support vector regression (SVR) approximators to enhance accuracy. Preliminary results indicate that this hybrid model effectively identifies key precursors and patterns associated with El Ni?o events, surpassing traditional forecasting methods. Results of the hybrid model produce a correlation of 0.93 in 4-month lagged forecasting of the Oceanic Ni?o Index (ONI)—indicative of high success rate of the model. Future work will focus on evaluating the model’s performance using additional reanalysis datasets and other methods of deep learning to further refine its robustness and applicability. We propose wavelet-based deep learning models which have potential to shine a light on achieving United Nations’ 2030 Agenda for Sustainable Development’s goal 13: “Climate Action”, as an innovation with potential in improving time series image forecasting in all fields.

References

[1]  Philander, S.G.H. (1985) El Niño and La Niña. Journal of the Atmospheric Sciences, 42, 2652-2662.
https://doi.org/10.1175/1520-0469(1985)042<2652:enaln>2.0.co;2
[2]  Trenberth, K.E. (1997) The Definition of El Niño. Bulletin of the American Meteorological Society, 78, 2771-2777.
https://doi.org/10.1175/1520-0477(1997)078<2771:tdoeno>2.0.co;2
[3]  Donald Ahrens, C. (2016) Meteorology Today: An Introduction to Weather, Climate, and the Environment. 11th Edition, Cengage Learning.
[4]  Collins, M., An, S., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F., et al. (2010) The Impact of Global Warming on the Tropical Pacific Ocean and El Niño. Nature Geoscience, 3, 391-397.
https://doi.org/10.1038/ngeo868
[5]  UNFCCC (CMA) (2023) Draft Decisions: Adaptation, Global Goal on Adaptation (GGA). UN Climate Change Conference—United Arab Emirates, Nov./Dec. 2023, Session CMA 5.
[6]  Glantz, M.H. (1999) Currents of Change: El Niño’s Impact on Climate and Society. Cambridge University Press.
[7]  IARAN (2023) El Niño o Report.
[8]  Smith, J. and Johnson, L. (2022) Impact of La Niña on Atmospheric Chemistry and Carbon Cycling. Journal of Climate, 35, 1001-1015.
[9]  Liu, J. and Wang, X. (2023) A Wavelet-Based Deep Learning Framework for Predicting Peak Intensity of Hurricanes in the Atlantic Ocean. Atmospheric and Climate Sciences, 13, 587-606.
https://doi.org/10.4236/acs.2023.134033
[10]  Ham, Y., Kim, J. and Luo, J. (2019) Deep Learning for Multi-Year ENSO Forecasts. Nature, 573, 568-572.
https://doi.org/10.1038/s41586-019-1559-7
[11]  Latif, M. and Keenlyside, N.S. (2009) El Niño/Southern Oscillation Response to Global Warming. Proceedings of the National Academy of Sciences, 106, 20578-20583.
https://doi.org/10.1073/pnas.0710860105
[12]  Hou, Z.-Z., Yang, W.-C. and Shi, Z.-Q. (2001) Discrete Wavelet Transform for Multiple Decomposition of Gravity Anomalies. Chinese Journal of Geophysics, 44, 529-537.
[13]  Pan, Z.H. and Wang, X.D. (1996) Wavelets and Dynamic Pattern Recognition. Proceedings of 3rd International Conference on Signal Processing (ICSP’96), Vol. 2, 1304-1307.
https://doi.org/10.1109/icsigp.1996.566536
[14]  Ibebuchi, C.C. and Richman, M.B. (2024) Deep Learning with Autoencoders and LSTM for Enso Forecasting. Cambridge University Press.
[15]  Huang, B., Thorne, P.W., Banzon, V.F., Boyer, T., Chepurin, G., Lawrimore, J.H., et al. (2017) Extended Reconstructed Sea Surface Temperature, Version 5 (ersstv5): Upgrades, Validations, and Intercomparisons. Journal of Climate, 30, 8179-8205.
https://doi.org/10.1175/jcli-d-16-0836.1
[16]  Webb, E. (2020) Reanalysis of the Extended Multivariate Enso Index. Master’s Thesis, The University of North Carolina.
[17]  Daubechies, I. (1992) Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics.
https://doi.org/10.1137/1.9781611970104
[18]  Lin, T., Xu, S., Shi, Q. and Hao, P. (2006) An Algebraic Construction of Orthonormal M-Band Wavelets with Perfect Reconstruction. Applied Mathematics and Computation, 172, 717-730.
https://doi.org/10.1016/j.amc.2004.11.025
[19]  Li, A., Liu, J., Liu, O. and Wang, X. (2023) Identifying Thermokarst Lakes Using Discrete Wavelet Transform-Based Deep Learning Framework. In: Pertusa, A., et al., Eds., Pattern Recognition and Image Analysis, Springer Nature, 479-489.
https://doi.org/10.1007/978-3-031-36616-1_38
[20]  Shankar, A., Chang, S., Wang, X. and Zhao, Y. (2022) Wavelet Based Machine Learning Approaches towards Precision Medicine in Diabetes Mellitus. The FASEB Journal, 36, 290-297.
https://doi.org/10.1096/fasebj.2022.36.s1.r6003
[21]  Hinton, G.E. and Salakhutdinov, R.R. (2006) Reducing the Dimensionality of Data with Neural Networks. Science, 313, 504-507.
https://doi.org/10.1126/science.1127647
[22]  Martinez, J.C. (2020) Introduction to Convolutional Neural Networks CNNs.
[23]  Shi, X.J., Chen, Z.R., Wang, H., Yeung, D.-Y., Wong, W.-K. and Woo, W.-C. (2015) Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. Advances in Neural Information Processing Systems, Volume 28, 802-810.
[24]  Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15, 1929-1958.
[25]  Pedregosa, F., Varoquaux, G., Gramfort, A., et al. (2011) Scikit-Learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825-2830.
[26]  Smola, A.J. and Schölkopf, B. (2004) A Tutorial on Support Vector Regression. Statistics and Computing, 14, 199-222.
https://doi.org/10.1023/b:stco.0000035301.49549.88
[27]  Bishop, C.M. (2006) Pattern Recognition and Machine Learning. Springer.
[28]  EUMeTrain (n.d.) Verification of Categorical Forecasts: A Conceptual Introduction.
[29]  Schaefer, J.T. (1990) The Critical Success Index as an Indicator of Warning Skill. Weather and Forecasting, 5, 570-575.
https://doi.org/10.1175/1520-0434(1990)005<0570:tcsiaa>2.0.co;2
[30]  NOAA (2024) El Niño and La Niña (Oceanic Niño Index-Oni).
[31]  Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lucic, M. and Schmid, C. (2021) Vivit: A Video Vision Transformer. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, 10-17 October 2021, 6836-6846.
https://doi.org/10.1109/iccv48922.2021.00676

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133