|
蚕丝纤维复合材料的研究综述
|
Abstract:
随着科技的不断发展,复合材料在各个领域的应用越来越广泛。然而诸如凯夫拉纤维、玻璃纤维、芳纶纤维等传统复合材料纤维存在环境友好性较低,可回收性较差等问题。在当前全球环保意识增强的大背景下,蚕丝这一天然纤维因其环境友好度高、强度大、韧性好等特点成为当下的研究热点。本文总结了天然纤维的应用,对其机械性能进行对比;从桑蚕丝、柞蚕丝的组成成分分别总结了各自的结构特点;最后对蚕丝纤维复合材料的应用前景进行综述。为作者下一阶段的研究找到突破点。
With the continuous development of technology, the application of composite materials in various fields is becoming increasingly widespread. However, traditional composite fibers such as Kevlar fiber, glass fiber, aramid fiber, etc., have problems such as low environmental friendliness and poor recyclability. Against the backdrop of increasing global environmental awareness, silk, a natural fiber, has become a research hotspot due to its high environmental friendliness, strength, and toughness. This article summarizes the applications of natural fibers and compares their mechanical properties, and the structural characteristics of mulberry silk and pressed silk based on their respective components. Finally, a review is provided on the current research status of silk fiber composite materials, and a breakthrough point is found for the author’s next stage of research.
[1] | 冯小明, 张崇才. 复合材料[M]. 第3版. 重庆: 重庆大学出版社, 2021. |
[2] | 郭耀伟, 蔡明. 天然纤维增强复合材料的应用及发展前景[J]. 纺织导报, 2021(5): 86-90. |
[3] | Azman, M.A., Asyraf, M.R.M., Khalina, A., Petrů, M., Ruzaidi, C.M., Sapuan, S.M., et al. (2021) Natural Fiber Reinforced Composite Material for Product Design: A Short Review. Polymers, 13, Article 1917. https://doi.org/10.3390/polym13121917 |
[4] | Cheung, H., Ho, M.P., Lau, K., Cardona, F. and Hui, D. (2009) Natural Fiber-Reinforced Composites for Bioengineering and Environmental Engineering Applications. Composites Part B: Engineering, 40, 655-663. |
[5] | Mamtaz, H., Fouladi, M.H., Al-Atabi, M. and Narayana Namasivayam, S. (2016) Acoustic Absorption of Natural Fiber Composites. Journal of Engineering, 2016, Article ID: 5836107. https://doi.org/10.1155/2016/5836107 |
[6] | La Rosa, A.D., Recca, A., Gagliano, A., Summerscales, J., Latteri, A., Cozzo, G., et al. (2014) Environmental Impacts and Thermal Insulation Performance of Innovative Composite Solutions for Building Applications. Construction and Building Materials, 55, 406-414. https://doi.org/10.1016/j.conbuildmat.2014.01.054 |
[7] | Reis, J.M.L. (2005) Fracture and Flexural Characterization of Natural Fiber-Reinforced Polymer Concrete. Construction and Building Materials, 20, 673-678. |
[8] | Suresh Kumar, S.M., Duraibabu, D. and Subramanian, K. (2014) Studies on Mechanical, Thermal and Dynamic Mechanical Properties of Untreated (Raw) and Treated Coconut Sheath Fiber Reinforced Epoxy Composites. Materials & Design, 59, 63-69. https://doi.org/10.1016/j.matdes.2014.02.013 |
[9] | Ramesh, M., Palanikumar, K. and Reddy, K.H. (2013) Comparative Evaluation on Properties of Hybrid Glass Fiber-Sisal/Jute Reinforced Epoxy Composites. Procedia Engineering, 51, 745-750. https://doi.org/10.1016/j.proeng.2013.01.106 |
[10] | Wu, C., Yang, K., Gu, Y., Xu, J., Ritchie, R.O. and Guan, J. (2019) Mechanical Properties and Impact Performance of Silk-Epoxy Resin Composites Modulated by Flax Fibres. Composites Part A: Applied Science and Manufacturing, 117, 357-368. https://doi.org/10.1016/j.compositesa.2018.12.003 |
[11] | Yusup, E., Mahzan, S. and Kamaruddin, M. (2019) Natural Fiber Reinforced Polymer for the Application of Sports Equipment Using Mold Casting Method. IOP Conference Series: Materials Science and Engineering, 494, Article ID: 012040. https://doi.org/10.1088/1757-899x/494/1/012040 |
[12] | Prabhu, L., Krishnaraj, V., Sathish, S., Gokulkumar, S., Karthi, N., Rajeshkumar, L., et al. (2021) A Review on Natural Fiber Reinforced Hybrid Composites: Chemical Treatments, Manufacturing Methods and Potential Applications. Materials Today: Proceedings, 45, 8080-8085. https://doi.org/10.1016/j.matpr.2021.01.280 |
[13] | Syduzzaman, M., Al Faruque, M.A., Bilisik, K. and Naebe, M. (2020) Plant-Based Natural Fibre Reinforced Composites: A Review on Fabrication, Properties and Applications. Coatings, 10, Article 973. https://doi.org/10.3390/coatings10100973 |
[14] | Ku, H., Wang, H., Pattarachaiyakoop, N. and Trada, M. (2011) A Review on the Tensile Properties of Natural Fiber Reinforced Polymer Composites. Composites Part B: Engineering, 42, 856-873. https://doi.org/10.1016/j.compositesb.2011.01.010 |
[15] | 颜丹丹. 不同提取方式对棉秆皮纤维性能的影响[J]. 纤纺广角, 2017(4): 143-144. |
[16] | Pérez-Rigueiro, J., Viney, C., Llorca, J. and Elices, M. (2000) Mechanical Properties of Single-Brin Silkworm Silk. Journal of Applied Polymer Science, 75, 1270-1277. https://doi.org/10.1002/(sici)1097-4628(20000307)75:10<1270::aid-app8>3.0.co;2-c |
[17] | Craven, J.P., Cripps, R. and Viney, C. (2000) Evaluating the Silk/epoxy Interface by Means of the Microbond Test. Composites Part A: Applied Science and Manufacturing, 31, 653-660. https://doi.org/10.1016/s1359-835x(00)00042-7 |
[18] | Bledzki, A. (1999) Composites Reinforced with Cellulose Based Fibres. Progress in Polymer Science, 24, 221-274. https://doi.org/10.1016/s0079-6700(98)00018-5 |
[19] | Gu, J., Li, Q., Chen, B., Xu, C., Zheng, H., Zhou, Y., et al. (2019) Species Identification of Bombyx Mori and Antheraea Pernyi Silk via Immunology and Proteomics. Scientific Reports, 9, Article No. 9381. https://doi.org/10.1038/s41598-019-45698-8 |
[20] | 朱进忠. 纺织材料[M]. 北京: 中国纺织出版社, 2009. |
[21] | Kirimura, J. (1962) Studies on Amino Acid Composition and Chemical Structure of Silk Protein by Microbiological Determination. Nippon Ngei kagaku Kaishi, 17, 447-522. |
[22] | Butler, D. (2003) Raiding the Medicine Cabinet. Nature, 424, 10-11. https://doi.org/10.1038/424010a |
[23] | Pérez-Rigueiro, J., Viney, C., Llorca, J. and Elices, M. (1998) Silkworm Silk as an Engineering Material. Journal of Applied Polymer Science, 70, 2439-2447. https://doi.org/10.1002/(sici)1097-4628(19981219)70:12<2439::aid-app16>3.0.co;2-j |
[24] | 刘孝良, 黄静雅, 张禹, 等. 柞蚕综合利用研究进展[J]. 北方蚕业, 2023, 44(3): 7-11, 35. |
[25] | Fu, C.J., Shao, Z.Z. and Fritz, V. (2009) Animal Silks: Their Structures, Properties and Artificial Production. Chemical Communications, 43, 6515-6529. |
[26] | Katori, S. and Kimura, T. (2002) Injection Moulding of Silk Fiber Reinforced Biodegradable Composites. In: Brebbia, C.A. and de Wilde, W.P., Eds., High Performance Structures and Composites, WIT Press, 97-105. |
[27] | Lee, S., Cho, D., Park, W., Lee, S., Han, S. and Drzal, L. (2005) Novel Silk/Poly(Butylene Succinate) Biocomposites: The Effect of Short Fibre Content on Their Mechanical and Thermal Properties. Composites Science and Technology, 65, 647-657. https://doi.org/10.1016/j.compscitech.2004.09.023 |
[28] | Oshkovr, S.A., Eshkoor, R.A., Taher, S.T., Ariffin, A.K. and Azhari, C.H. (2012) Crashworthiness Characteristics Investigation of Silk/epoxy Composite Square Tubes. Composite Structures, 94, 2337-2342. https://doi.org/10.1016/j.compstruct.2012.03.031 |
[29] | Ataollahi, S., Taher, S.T., Eshkoor, R.A., Ariffin, A.K. and Azhari, C.H. (2012) Energy Absorption and Failure Response of Silk/Epoxy Composite Square Tubes: Experimental. Composites Part B: Engineering, 43, 542-548. https://doi.org/10.1016/j.compositesb.2011.08.019 |
[30] | Eshkoor, R.A., Oshkovr, S.A., Sulong, A.B., Zulkifli, R., Ariffin, A.K. and Azhari, C.H. (2013) Effect of Trigger Configuration on the Crashworthiness Characteristics of Natural Silk Epoxy Composite Tubes. Composites Part B: Engineering, 55, 5-10. https://doi.org/10.1016/j.compositesb.2013.05.022 |
[31] | Koronis, G., Silva, A. and Fontul, M. (2013) Green Composites: A Review of Adequate Materials for Automotive Applications. Composites Part B: Engineering, 44, 120-127. https://doi.org/10.1016/j.compositesb.2012.07.004 |
[32] | Li, Y., Mai, Y. and Ye, L. (2000) Sisal Fibre and Its Composites: A Review of Recent Developments. Composites Science and Technology, 60, 2037-2055. https://doi.org/10.1016/s0266-3538(00)00101-9 |
[33] | Shao, Z. and Vollrath, F. (2002) Surprising Strength of Silkworm Silk. Nature, 418, 741. https://doi.org/10.1038/418741a |
[34] | Tsukada, M., Obo, M., Kato, H., Freddi, G. and Zanetti, F. (1996) Structure and Dyeability of Bombyx mori Silk Fibers with Different Filament Sizes. Journal of Applied Polymer Science, 60, 1619-1627. https://doi.org/10.1002/(sici)1097-4628(19960606)60:10<1619::aid-app14>3.0.co;2-# |
[35] | Kawahara, Y., Shioya, M. and Takaku, A. (1996) Mechanical Properties of Silk Fibers Treated with Methacrylamide. Journal of Applied Polymer Science, 61, 1359-1364. https://doi.org/10.1002/(sici)1097-4628(19960822)61:8<1359::aid-app17>3.3.co;2-d |
[36] | Rajkhowa, R., Gupta, V.B. and Kothari, V.K. (2000) Tensile Stress-Strain and Recovery Behavior of Indian Silk Fibers and Their Structural Dependence. Journal of Applied Polymer Science, 77, 2418-2429. https://doi.org/10.1002/1097-4628(20000912)77:11<2418::aid-app10>3.0.co;2-q |
[37] | Yang, K., Ritchie, R.O., Gu, Y., Wu, S.J. and Guan, J. (2016) High Volume-Fraction Silk Fabric Reinforcements Can Improve the Key Mechanical Properties of Epoxy Resin Composites. Materials & Design, 108, 470-478. https://doi.org/10.1016/j.matdes.2016.06.128 |
[38] | Zainudin, Z., Mohd Yusoff, N.I.S., Wahit, M.U. and Che Man, S.H. (2020) Mechanical, Thermal, Void Fraction and Water Absorption of Silane Surface Modified Silk Fiber Reinforced Epoxy Composites. Polymer-Plastics Technology and Materials, 59, 1987-2002. https://doi.org/10.1080/25740881.2020.1784215 |
[39] | Chen, X., Knight, D.P., Shao, Z. and Vollrath, F. (2001) Regenerated Bombyx Silk Solutions Studied with Rheometry and FTIR. Polymer, 42, 09969-09974. https://doi.org/10.1016/s0032-3861(01)00541-9 |
[40] | Unger, R. (2004) Growth of Human Cells on a Non-Woven Silk Fibroin Net: A Potential for Use in Tissue Engineering. Biomaterials, 25, 1069-1075. https://doi.org/10.1016/s0142-9612(03)00619-7 |
[41] | 陈新, 周丽, 邵正中, 周平, Knight D P, Vollrath F. 时间分辨红外光谱对丝蛋白膜构象转变动力学的研究——再生蚕丝蛋白膜在高浓度醇溶液中的构象转变[J]. 化学学报, 2003, 61(4): 625-629. |
[42] | 周文, 黄郁芳, 邵正中, 陈新. 铁和锰对桑蚕丝蛋白构象转变的影响[J]. 化学学报, 2007, 65(19): 2197-2201. |
[43] | 李明忠, 卢神州. 用于机体缺损组织修复的材料及其制备方法[P]. 中国专利, CN02138127.5. 2004-12-15. |