全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Diarrheal Diseases: A Review on Gastroenteritis Bacteria Global Burden and Alternative Control of Multidrug-Resistant Strains

DOI: 10.4236/aim.2024.1410034, PP. 493-512

Keywords: Diarrheal Disease, Bacteria, Multidrug Resistance, Fungal Metabolites

Full-Text   Cite this paper   Add to My Lib

Abstract:

Diarrheal diseases represent a significant and pervasive health challenge for humanity. The aetiology of diarrheal diseases is typically associated with the presence of enteropathogens, including viruses, bacteria and parasites. The implementation of preventive measures, including the maintenance of good food hygiene, effective water sanitation, and the development of rotavirus vaccines, has resulted in a notable reduction in the prevalence of the disease. However, the emergence of bacterial multidrug resistance due to the past or present inappropriate use of antibiotics has rendered bacterial infections a significant challenge. The objective of this review is threefold: firstly, to provide an overview of diarrheal diseases associated with bacteria; secondly, to offer a concise analysis of bacterial multidrug resistance on a global scale; and thirdly, to present the potential of filamentous fungi as an alternative solution to the challenge posed by multidrug-resistant strains. Campylobacter spp. is the most dangerous bacteria, followed by Shigella spp. and Vibrio cholerae in all age groups combined. However, Shigella spp. was the deadliest in children under five years of age and, together with E. coli, are the most antibiotic-resistant bacteria. With their highly developed secondary metabolism, fungi are a reservoir of natural bioactive compounds.

References

[1]  Lee, H. and Yoon, Y. (2021) Etiological Agents Implicated in Foodborne Illness World Wide. Food Science of Animal Resources, 41, 1-7.
https://doi.org/10.5851/kosfa.2020.e75
[2]  World Health Organization (2020) World Health Statistics 2020.
https://iris.who.int/bitstream/handle/10665/332070/9789240005105-eng.pdf?sequence=1&isAllowed=y
[3]  Mcmahan, Z.H. and Dupont, H.L. (2007) Review Article: The History of Acute Infectious Diarrhoea Management—From Poorly Focused Empiricism to Fluid Therapy and Modern Pharmacotherapy. Alimentary Pharmacology & Therapeutics, 25, 759-769.
https://doi.org/10.1111/j.1365-2036.2007.03261.x
[4]  Farthing, M., Salam, M.A., Lindberg, G., Dite, P., Khalif, I., Salazar-Lindo, E., et al. (2013) Acute Diarrhea in Adults and Children. Journal of Clinical Gastroenterology, 47, 12-20.
https://doi.org/10.1097/mcg.0b013e31826df662
[5]  Troeger, C., Forouzanfar, M., Rao, P.C., Khalil, I., Brown, A., Reiner, R.C., et al. (2017) Estimates of Global, Regional, and National Morbidity, Mortality, and Aetiologies of Diarrhoeal Diseases: A Systematic Analysis for the Global Burden of Disease Study 2015. The Lancet Infectious Diseases, 17, 909-948.
https://doi.org/10.1016/s1473-3099(17)30276-1
[6]  Wolde, D., Tilahun, G.A., Kotiso, K.S., Medhin, G. and Eguale, T. (2022) The Burden of Diarrheal Diseases and Its Associated Factors among Under-Five Children in Welkite Town: A Community Based Cross-Sectional Study. International Journal of Public Health, 67, Article 1604960.
https://doi.org/10.3389/ijph.2022.1604960
[7]  Mokomane, M., Kasvosve, I., Melo, E.d., Pernica, J.M. and Goldfarb, D.M. (2017) The Global Problem of Childhood Diarrhoeal Diseases: Emerging Strategies in Prevention and Management. Therapeutic Advances in Infectious Disease, 5, 29-43.
https://doi.org/10.1177/2049936117744429
[8]  Jonesteller, C.L., Burnett, E., Yen, C., Tate, J.E. and Parashar, U.D. (2017) Effectiveness of Rotavirus Vaccination: A Systematic Review of the First Decade of Global Postlicensure Data, 2006-2016. Clinical Infectious Diseases, 65, 840-850.
https://doi.org/10.1093/cid/cix369
[9]  Davies, J. and Davies, D. (2010) Origins and Evolution of Antibiotic Resistance. Microbiology and Molecular Biology Reviews, 74, 417-433.
https://doi.org/10.1128/mmbr.00016-10
[10]  Hitch, G. and Fleming, N. (2018) Antibiotic Resistance in Travellers’ Diarrhoeal Disease, an External Perspective. Journal of Travel Medicine, 25, S27-S37.
https://doi.org/10.1093/jtm/tay014
[11]  Christaki, E., Marcou, M. and Tofarides, A. (2019) Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. Journal of Molecular Evolution, 88, 26-40.
https://doi.org/10.1007/s00239-019-09914-3
[12]  Varela, M.F., Stephen, J., Lekshmi, M., Ojha, M., Wenzel, N., Sanford, L.M., et al. (2021) Bacterial Resistance to Antimicrobial Agents. Antibiotics, 10, Article 593.
https://doi.org/10.3390/antibiotics10050593
[13]  Bills, G.F. and Gloer, J.B. (2017) Biologically Active Secondary Metabolites from the Fungi. In: Heitman, J., Howlett, B.J., Crous, P.W., Stukenbrock, E.H., James, T.Y. and Gow, N.A.R., Eds., The Fungal Kingdom, ASM Press, 1087-1119.
https://doi.org/10.1128/9781555819583.ch54
[14]  Netzker, T., Flak, M., Krespach, M.K., Stroe, M.C., Weber, J., Schroeckh, V., et al. (2018) Microbial Interactions Trigger the Production of Antibiotics. Current Opinion in Microbiology, 45, 117-123.
https://doi.org/10.1016/j.mib.2018.04.002
[15]  Cueto, M., Jensen, P.R., Kauffman, C., Fenical, W., Lobkovsky, E. and Clardy, J. (2001) Pestalone, a New Antibiotic Produced by a Marine Fungus in Response to Bacterial Challenge. Journal of Natural Products, 64, 1444-1446.
https://doi.org/10.1021/np0102713
[16]  Oh, D., Kauffman, C.A., Jensen, P.R. and Fenical, W. (2007) Induced Production of Emericellamides a and B from the Marine-Derived Fungus Emericella sp. in Competing Co-Culture. Journal of Natural Products, 70, 515-520.
https://doi.org/10.1021/np060381f
[17]  Xu, S., Li, M., Hu, Z., Shao, Y., Ying, J. and Zhang, H. (2023) The Potential Use of Fungal Co-Culture Strategy for Discovery of New Secondary Metabolites. Microorganisms, 11, Article 464.
https://doi.org/10.3390/microorganisms11020464
[18]  Baby, J. and Thomas, T. (2021) A Review on Different Approaches to Isolate Antibiotic Compounds from Fungi. Italian Journal of Mycology, 50, 99-116.
https://doi.org/10.6092/issn.2531-7342/12700
[19]  Troeger, C., Blacker, B.F., Khalil, I.A., Rao, P.C., Cao, S., Zimsen, S.R., et al. (2018) Estimates of the Global, Regional, and National Morbidity, Mortality, and Aetiologies of Diarrhoea in 195 Countries: A Systematic Analysis for the Global Burden of Disease Study 2016. The Lancet Infectious Diseases, 18, 1211-1228.
https://doi.org/10.1016/s1473-3099(18)30362-1
[20]  Fleckenstein, J.M., Matthew Kuhlmann, F. and Sheikh, A. (2021) Acute Bacterial Gastroenteritis. Gastroenterology Clinics of North America, 50, 283-304.
https://doi.org/10.1016/j.gtc.2021.02.002
[21]  Zaidi, M.B. and Estrada-García, T. (2014) Shigella: A Highly Virulent and Elusive Pathogen. Current Tropical Medicine Reports, 1, 81-87.
https://doi.org/10.1007/s40475-014-0019-6
[22]  Anderson, J.D., Bagamian, K.H., Muhib, F., Amaya, M.P., Laytner, L.A., Wierzba, T., et al. (2019) Burden of Enterotoxigenic Escherichia Coli and Shigella Non-Fatal Diarrhoeal Infections in 79 Low-Income and Lower Middle-Income Countries: A Modelling Analysis. The Lancet Global Health, 7, e321-e330.
https://doi.org/10.1016/s2214-109x(18)30483-2
[23]  Cheng, R.A., Eade, C.R. and Wiedmann, M. (2019) Embracing Diversity: Differences in Virulence Mechanisms, Disease Severity, and Host Adaptations Contribute to the Success of Nontyphoidal Salmonella as a Foodborne Pathogen. Frontiers in Microbiology, 10, Article 1368.
https://doi.org/10.3389/fmicb.2019.01368
[24]  Mandomando, I., Macete, E., Sigaúque, B., Morais, L., Quintó, L., Sacarlal, J., et al. (2009) Invasive Non-Typhoidal Salmonella in Mozambican Children. Tropical Medicine & International Health, 14, 1467-1474.
https://doi.org/10.1111/j.1365-3156.2009.02399.x
[25]  García-Sánchez, L., Melero, B. and Rovira, J. (2018) Campylobacter in the Food Chain. Advances in Food and Nutrition Research, 86, 215-252.
https://doi.org/10.1016/bs.afnr.2018.04.005
[26]  Lackner, J., Schlichting, D., Müller-Graf, C. and Greiner, M. (2017) Systematischer Review Zur Krankheitslast Durch Campylobacter spp. Das Gesundheitswesen, 81, e110-e120.
https://doi.org/10.1055/s-0043-121885
[27]  Belina, D., Gobena, T., Kebede, A., Chimdessa, M., Hailu, Y. and Hald, T. (2023) Occurrence of Diarrheagenic Pathogens and Their Coinfection Profiles in Diarrheic Under Five Children and Tracked Human Contacts in Urban and Rural Settings of Eastern Ethiopia. Microbiology Insights, 16.
https://doi.org/10.1177/11786361231196527
[28]  Kotloff, K.L., Blackwelder, W.C., Nasrin, D., Nataro, J.P., Farag, T.H., van Eijk, A., et al. (2012) The Global Enteric Multicenter Study (GEMS) of Diarrheal Disease in Infants and Young Children in Developing Countries: Epidemiologic and Clinical Methods of the Case/Control Study. Clinical Infectious Diseases, 55, S232-S245.
https://doi.org/10.1093/cid/cis753
[29]  Kotloff, K.L., Nasrin, D., Blackwelder, W.C., Wu, Y., Farag, T., Panchalingham, S., et al. (2019) The Incidence, Aetiology, and Adverse Clinical Consequences of Less Severe Diarrhoeal Episodes among Infants and Children Residing in Low-Income and Middle-Income Countries: A 12-Month Case-Control Study as a Follow-On to the Global Enteric Multicenter Study (gems). The Lancet Global Health, 7, e568-e584.
https://doi.org/10.1016/s2214-109x(19)30076-2
[30]  Levine, M.M., Nasrin, D., Acácio, S., Bassat, Q., Powell, H., Tennant, S.M., et al. (2020) Diarrhoeal Disease and Subsequent Risk of Death in Infants and Children Residing in Low-Income and Middle-Income Countries: Analysis of the GEMS Case-Control Study and 12-Month GEMS-1A Follow-On Study. The Lancet Global Health, 8, e204-e214.
https://doi.org/10.1016/s2214-109x(19)30541-8
[31]  Cassini, A., Högberg, L.D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G.S., et al. (2019) Attributable Deaths and Disability-Adjusted Life-Years Caused by Infections with Antibiotic-Resistant Bacteria in the EU and the European Economic Area in 2015: A Population-Level Modelling Analysis. The Lancet Infectious Diseases, 19, 56-66.
https://doi.org/10.1016/s1473-3099(18)30605-4
[32]  Wolf, J., Hubbard, S., Brauer, M., Ambelu, A., Arnold, B.F., Bain, R., et al. (2022) Effectiveness of Interventions to Improve Drinking Water, Sanitation, and Handwashing with Soap on Risk of Diarrhoeal Disease in Children in Low-Income and Middle-Income Settings: A Systematic Review and Meta-analysis. The Lancet, 400, 48-59.
https://doi.org/10.1016/s0140-6736(22)00937-0
[33]  Santosham, M., Chandran, A., Fitzwater, S., Fischer-Walker, C., Baqui, A.H. and Black, R. (2010) Progress and Barriers for the Control of Diarrhoeal Disease. The Lancet, 376, 63-67.
https://doi.org/10.1016/s0140-6736(10)60356-x
[34]  Ugboko, H.U., Nwinyi, O.C., Oranusi, S.U. and Oyewale, J.O. (2020) Childhood Diarrhoeal Diseases in Developing Countries. Heliyon, 6, e03690.
https://doi.org/10.1016/j.heliyon.2020.e03690
[35]  Bruzzese, E., Giannattasio, A. and Guarino, A. (2018) Antibiotic Treatment of Acute Gastroenteritis in Children. F1000Research, 7, 193.
https://doi.org/10.12688/f1000research.12328.1
[36]  Dereje, B., Yibabie, S., Keno, Z. and Megersa, A. (2023) Antibiotic Utilization Pattern in Treatment of Acute Diarrheal Diseases: The Case of Hiwot Fana Specialized University Hospital, Harar, Ethiopia. Journal of Pharmaceutical Policy and Practice, 16, Article 62.
https://doi.org/10.1186/s40545-023-00568-7
[37]  Baker, S. and The, H.C. (2018) Recent Insights into Shigella: A Major Contributor to the Global Diarrhoeal Disease Burden. Current Opinion in Infectious Diseases, 31, 449-454.
https://doi.org/10.1097/qco.0000000000000475
[38]  Silva, J., Leite, D., Fernandes, M., Mena, C., Gibbs, P.A. and Teixeira, P. (2011) Campylobacter spp. as a Foodborne Pathogen: A Review. Frontiers in Microbiology, 2, Article 200.
https://doi.org/10.3389/fmicb.2011.00200
[39]  Eng, S., Pusparajah, P., Ab Mutalib, N., Ser, H., Chan, K. and Lee, L. (2015) Salmonella: A Review on Pathogenesis, Epidemiology and Antibiotic Resistance. Frontiers in Life Science, 8, 284-293.
https://doi.org/10.1080/21553769.2015.1051243
[40]  Manetu, W.M., M’masi, S. and Recha, C.W. (2021) Diarrhea Disease among Children under 5 Years of Age: A Global Systematic Review. Open Journal of Epidemiology, 11, 207-221.
https://doi.org/10.4236/ojepi.2021.113018
[41]  Koluman, A. and Dikici, A. (2012) Antimicrobial Resistance of Emerging Foodborne Pathogens: Status Quo and Global Trends. Critical Reviews in Microbiology, 39, 57-69.
https://doi.org/10.3109/1040841x.2012.691458
[42]  Fashae, K., Ogunsola, F., Aarestrup, F.M. and Hendriksen, R.S. (2010) Antimicrobial Susceptibility and Serovars of Salmonella from Chickens and Humans in Ibadan, Nigeria. The Journal of Infection in Developing Countries, 4, 484-494.
https://doi.org/10.3855/jidc.909
[43]  Lunguya, O., Lejon, V., Phoba, M., Bertrand, S., Vanhoof, R., Glupczynski, Y., et al. (2013) Antimicrobial Resistance in Invasive Non-Typhoid Salmonella from the Democratic Republic of the Congo: Emergence of Decreased Fluoroquinolone Susceptibility and Extended-Spectrum Beta Lactamases. PLOS Neglected Tropical Diseases, 7, e2103.
https://doi.org/10.1371/journal.pntd.0002103
[44]  Maltha, J., Guiraud, I., Kaboré, B., Lompo, P., Ley, B., Bottieau, E., et al. (2014) Frequency of Severe Malaria and Invasive Bacterial Infections among Children Admitted to a Rural Hospital in Burkina Faso. PLOS ONE, 9, e89103.
https://doi.org/10.1371/journal.pone.0089103
[45]  Kalonji, L.M., Post, A., Phoba, M., Falay, D., Ngbonda, D., Muyembe, J., et al. (2015) Invasive Salmonella Infections at Multiple Surveillance Sites in the Democratic Republic of the Congo, 2011-2014. Clinical Infectious Diseases, 61, S346-S353.
https://doi.org/10.1093/cid/civ713
[46]  Eibach, D., Al-Emran, H.M., Dekker, D.M., Krumkamp, R., Adu-Sarkodie, Y., Cruz Espinoza, L.M., et al. (2016) The Emergence of Reduced Ciprofloxacin Susceptibility In Salmonella enterica Causing Bloodstream Infections in Rural Ghana. Clinical Infectious Diseases, 62, S32-S36.
https://doi.org/10.1093/cid/civ757
[47]  Hlashwayo, D.F., Noormahomed, E.V., Bahule, L., Benson, C.A., Schooley, R.T., Sigaúque, B., et al. (2023) Susceptibility Antibiotic Screening Reveals High Rates of Multidrug Resistance of Salmonella, Shigella and Campylobacter in HIV Infected and Uninfected Patients from Mozambique. BMC Infectious Diseases, 23, Article No. 255.
https://doi.org/10.1186/s12879-023-08219-7
[48]  Lefèvre, S., Njamkepo, E., Feldman, S., Ruckly, C., Carle, I., Lejay-Collin, M., et al. (2023) Rapid Emergence of Extensively Drug-Resistant Shigella sonnei in France. Nature Communications, 14, Article No. 462.
https://doi.org/10.1038/s41467-023-36222-8
[49]  Sharif, N., Ahmed, S.N., Khandaker, S., Monifa, N.H., Abusharha, A., Vargas, D.L.R., et al. (2023) Multidrug Resistance Pattern and Molecular Epidemiology of Pathogens among Children with Diarrhea in Bangladesh, 2019-2021. Scientific Reports, 13, Article No. 13975.
https://doi.org/10.1038/s41598-023-41174-6
[50]  Akinduti, A.P., Ayodele, O., Motayo, B.O., Obafemi, Y.D., Isibor, P.O. and Aboderin, O.W. (2022) Cluster Analysis and Geospatial Mapping of Antibiotic Resistant Escherichia coli O157 in Southwest Nigerian Communities. One Health, 15, Article ID: 100447.
https://doi.org/10.1016/j.onehlt.2022.100447
[51]  Iwu, C.D., Nontongana, N., Iwu-Jaja, C.J., Anyanwu, B.O., du Plessis, E., Korsten, L., et al. (2023) Spatial Diarrheal Disease Risks and Antibiogram Diversity of Diarrheagenic Escherichia coli in Selected Access Points of the Buffalo River, South Africa. PLOS ONE, 18, e0288809.
https://doi.org/10.1371/journal.pone.0288809
[52]  Oneko, M., Kariuki, S., Muturi-Kioi, V., Otieno, K., Otieno, V.O., Williamson, J.M., et al. (2015) Emergence of Community-Acquired, Multidrug-Resistant Invasive Nontyphoidal Salmonella Disease in Rural Western Kenya, 2009-2013. Clinical Infectious Diseases, 61, S310-S316.
https://doi.org/10.1093/cid/civ674
[53]  Lima, B., Sanchez, M., Agüero, M.B., Tapia, A., Palermo, J.A. and Feresin, G.E. (2015) Antibacterial Activity of Extracts and Compounds Isolated from the Andean Medicinal Plant Azorella cryptantha (Clos) Reiche, Apiaceae. Industrial Crops and Products, 64, 152-157.
https://doi.org/10.1016/j.indcrop.2014.10.065
[54]  Keddy, K.H., Sooka, A., Musekiwa, A., Smith, A.M., Ismail, H., Tau, N.P., et al. (2015) Clinical and Microbiological Features of Salmonella Meningitis in a South African Population, 2003-2013. Clinical Infectious Diseases, 61, S272-S282.
https://doi.org/10.1093/cid/civ685
[55]  Keddy, K.H., Musekiwa, A., Sooka, A., Karstaedt, A., Nana, T., Seetharam, S., et al. (2017) Clinical and Microbiological Features of Invasive Nontyphoidal Salmonella Associated with HIV-Infected Patients, Gauteng Province, South Africa. Medicine, 96, e6448.
https://doi.org/10.1097/md.0000000000006448
[56]  Kariuki, S., Mbae, C., Onsare, R., Kavai, S.M., Wairimu, C., Ngetich, R., et al. (2019) Multidrug-resistant Nontyphoidal Salmonella Hotspots as Targets for Vaccine Use in Management of Infections in Endemic Settings. Clinical Infectious Diseases, 68, S10-S15.
https://doi.org/10.1093/cid/ciy898
[57]  Iroh Tam, P., Musicha, P., Kawaza, K., Cornick, J., Denis, B., Freyne, B., et al. (2018) Emerging Resistance to Empiric Antimicrobial Regimens for Pediatric Bloodstream Infections in Malawi (1998-2017). Clinical Infectious Diseases, 69, 61-68.
https://doi.org/10.1093/cid/ciy834
[58]  Saliba, R., Zahar, J., Dabar, G., Riachy, M., Karam-Sarkis, D. and Husni, R. (2023) Limiting the Spread of Multidrug-Resistant Bacteria in Low-To-Middle-Income Countries: One Size Does Not Fit All. Pathogens, 12, Article 144.
https://doi.org/10.3390/pathogens12010144
[59]  Alajel, S.M., Alzahrani, K.O., Almohisen, A.A., Alrasheed, M.M. and Almomen, S.M. (2023) Antimicrobial Sales Comparison before and after the Implementation of Nationwide Restriction Policy in Saudi Arabia. Antibiotics, 13, Article 15.
https://doi.org/10.3390/antibiotics13010015
[60]  Aschbacher, R., Pagani, L., Migliavacca, R., Pagani, L., Confalonieri, M., Farina, C., et al. (2020) Recommendations for the Surveillance of Multidrug-Resistant Bacteria in Italian Long-Term Care Facilities by the Glister Working Group of the Italian Association of Clinical Microbiologists (AMCLI). Antimicrobial Resistance & Infection Control, 9, Article No. 106.
https://doi.org/10.1186/s13756-020-00771-0
[61]  Hanson, J.R. (2006) Natural Products: The Secondary Metabolites. Royal Society of Chemistry, 105-130.
[62]  Kück, U., Bloemendal, S. and Teichert, I. (2014) Putting Fungi to Work: Harvesting a Cornucopia of Drugs, Toxins, and Antibiotics. PLOS Pathogens, 10, e1003950.
https://doi.org/10.1371/journal.ppat.1003950
[63]  Shen, B. (2003) Polyketide Biosynthesis Beyond the Type I, II and III Polyketide Synthase Paradigms. Current Opinion in Chemical Biology, 7, 285-295.
https://doi.org/10.1016/s1367-5931(03)00020-6
[64]  Nielsen, J.C., Grijseels, S., Prigent, S., Ji, B., Dainat, J., Nielsen, K.F., et al. (2017) Global Analysis of Biosynthetic Gene Clusters Reveals Vast Potential of Secondary Metabolite Production in Penicillium Species. Nature Microbiology, 2, Article No. 17044.
https://doi.org/10.1038/nmicrobiol.2017.44
[65]  Yamazaki, H., Nonaka, K., Masuma, R., Ōmura, S. and Tomoda, H. (2009) Xanthoradones, New Potentiators of Imipenem Activity against Methicillin-Resistant Staphylococcus aureus, Produced by Penicillium radicum FKI-3765-2: I. Taxonomy, Fermentation, Isolation and Biological Properties. The Journal of Antibiotics, 62, 431-434.
https://doi.org/10.1038/ja.2009.69
[66]  Orfali, R., Perveen, S., Al-Taweel, A., Ahmed, A.F., Majrashi, N., Alluhay, K., et al. (2020) Penipyranicins A-C: Antibacterial Methylpyran Polyketides from a Hydrothermal Spring Sediment Penicillium sp. Journal of Natural Products, 83, 3591-3597.
https://doi.org/10.1021/acs.jnatprod.0c00741
[67]  Vrabl, P., Siewert, B., Winkler, J., Schöbel, H., Schinagl, C.W., Knabl, L., et al. (2022) Xanthoepocin, a Photolabile Antibiotic of Penicillium ochrochloron CBS 123823 with High Activity against Multiresistant Gram-Positive Bacteria. Microbial Cell Factories, 21, Article No. 1.
https://doi.org/10.1186/s12934-021-01718-9
[68]  Miethbauer, S., Gaube, F., Möllmann, U., Dahse, H., Schmidtke, M., Gareis, M., et al. (2009) Antimicrobial, Antiproliferative, Cytotoxic, and Tau Inhibitory Activity of Rubellins and Caeruleoramularin Produced by the Phytopathogenic Fungus Ramularia Collo-Cygni. Planta Medica, 75, 1523-1525.
https://doi.org/10.1055/s-0029-1185835
[69]  Li, G., Kusari, S., Lamshöft, M., Schüffler, A., Laatsch, H. and Spiteller, M. (2014) Antibacterial Secondary Metabolites from an Endophytic Fungus, Eupenicillium sp. LG41. Journal of Natural Products, 77, 2335-2341.
https://doi.org/10.1021/np500111w
[70]  Bo, G. (2000) Giuseppe Brotzu and the Discovery of Cephalosporins. Clinical Microbiology and Infection, 6, 6-8.
https://doi.org/10.1111/j.1469-0691.2000.tb02032.x
[71]  Gaynes, R. (2017) The Discovery of Penicillin—New Insights after More than 75 Years of Clinical Use. Emerging Infectious Diseases, 23, 849-853.
https://doi.org/10.3201/eid2305.161556
[72]  Shimoyama, A. and Ogasawara, R. (2002) Dipeptides and Diketopiperazines in the Yama-to-791198 and Murchison Carbonaceous Chondrites. Origins of Life and Evolution of the Biosphere, 32, 165-179.
https://doi.org/10.1023/a:1016015319112
[73]  Furtado, N.A.J.C., Pupo, M.T., Carvalho, I., Campo, V.L., Duarte, M.C.T. and Bastos, J.K. (2005) Diketopiperazines Produced by an Aspergillus fumigatus Brazilian Strain. Journal of the Brazilian Chemical Society, 16, 1448-1453.
https://doi.org/10.1590/S0103-50532005000800026
[74]  Kim, S., Shin, D., Lee, T. and Oh, K. (2004) Periconicins, Two New Fusicoccane Diterpenes Produced by an Endophytic Fungus Periconia sp. with Antibacterial Activity. Journal of Natural Products, 67, 448-450.
https://doi.org/10.1021/np030384h
[75]  Elissawy, A., El-Shazly, M., Ebada, S., Singab, A. and Proksch, P. (2015) Bioactive Terpenes from Marine-Derived Fungi. Marine Drugs, 13, 1966-1992.
https://doi.org/10.3390/md13041966
[76]  Nord, C., Levenfors, J.J., Bjerketorp, J., Sahlberg, C., Guss, B., Öberg, B., et al. (2019) Antibacterial Isoquinoline Alkaloids from the Fungus Penicillium spathulatum Em19. Molecules, 24, Article 4616.
https://doi.org/10.3390/molecules24244616
[77]  Abdelalatif, A.M., Elwakil, B.H., Mohamed, M.Z., Hagar, M. and Olama, Z.A. (2023) Fungal Secondary Metabolites/Dicationic Pyridinium Iodide Combinations in Combat against Multi-Drug Resistant Microorganisms. Molecules, 28, Article 2434.
https://doi.org/10.3390/molecules28062434
[78]  Chen, Y., Liu, C., Kumaravel, K., Nan, L. and Tian, Y. (2022) Two New Sulfate-Modified Dibenzopyrones with Anti-Foodborne Bacteria Activity from Sponge-Derived Fungus Alternaria Sp. SCSIOS02F49. Frontiers in Microbiology, 13, Article 879674.
https://doi.org/10.3389/fmicb.2022.879674
[79]  Hussein, M.E., Mohamed, O.G., El-Fishawy, A.M., El-Askary, H.I., El-Senousy, A.S., El-Beih, A.A., et al. (2022) Identification of Antibacterial Metabolites from Endophytic Fungus Aspergillus fumigatus, Isolated from Albizia lucidior Leaves (Fabaceae), Utilizing Metabolomic and Molecular Docking Techniques. Molecules, 27, Article 1117.
https://doi.org/10.3390/molecules27031117
[80]  Shang, Z., Li, X., Li, C. and Wang, B. (2012) Diverse Secondary Metabolites Produced by Marine-Derived Fungus Nigrospora sp. MA75 on Various Culture Media. Chemistry & Biodiversity, 9, 1338-1348.
https://doi.org/10.1002/cbdv.201100216
[81]  Jouda, J., Tamokou, J., Mbazoa, C.D., Sarkar, P., Bag, P.K. and Wandji, J. (2016) Anticancer and Antibacterial Secondary Metabolites from the Endophytic Fungus Penicillium sp. CAM64 against Multi-Drug Resistant Gram-Negative Bacteria. African Health Sciences, 16, 734.
https://doi.org/10.4314/ahs.v16i3.13
[82]  Pan, C., Shi, Y., Auckloo, B.N., Hassan, S.S.u., Akhter, N., Wang, K., et al. (2017) Isolation and Antibiotic Screening of Fungi from a Hydrothermal Vent Site and Characterization of Secondary Metabolites from a Penicillium Isolate. Marine Biotechnology, 19, 469-479.
https://doi.org/10.1007/s10126-017-9765-5
[83]  Devi, P., Rodrigues, C., Naik, C.G. and D’Souza, L. (2012) Isolation and Characterization of Antibacterial Compound from a Mangrove-Endophytic Fungus, Penicillium chrysogenum MTCC 5108. Indian Journal of Microbiology, 52, 617-623.
https://doi.org/10.1007/s12088-012-0277-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133