全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于强化学习的平衡重式叉车防侧翻控制设计
Anti-Rollover Control Based on Reinforcement Learning of Counterbalanced for Klift Truncks

DOI: 10.12677/dsc.2024.134019, PP. 192-200

Keywords: 平衡重式叉车,防侧翻控制,强化学习,减速曲线
Counterweight Forklift
, Anti-Rollover Control, Strengthen Learning, Deceleration Curve

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提升平衡重式叉车的防侧翻能力,提出了一种基于制动力动态分配方法的叉车防倾覆策略。本文首先根据相关文献建立了三自由度叉车模型,该模型根据LTR方法将工况分为安全区域、安全边界区域、异常区域,之后结合Actor与Critic强化学习决策模型,实现叉车前轮制动力的动态分配,从而达到防侧翻控制的目的。本文提出的叉车防侧倾控制方法具有改造成本低、可实用性高等优势,适合在现有的平衡重式叉车上改装,实车测试表明,基于强化学习的防侧翻减速控制,可以有效降低车辆侧翻风险,提高叉车工作安全性。
In order to improve the anti-rollover ability of balanced forklift, an anti-rollover strategy of forklift based on dynamic distribution of braking force was proposed. In this paper, a three degree of freedom forklift model is established according to the relevant literature. The model divides the working conditions into safety area, safety boundary area and abnormal area according to LTR. Then, combined with actor and critical reinforcement learning decision model, the dynamic distribution of the front wheel braking force of the forklift is realized, so as to achieve the purpose of anti-rollover control. The anti-roll control method proposed in this paper has the advantages of low transformation cost and high practicability and is suitable for retrofitting on the existing balanced forklift. The actual vehicle test and MATLAB simulation show that the anti-roll deceleration control based on reinforcement learning can effectively reduce the risk of vehicle rollover and improve the safety of forklift.

References

[1]  夏光, 李嘉诚, 唐希雯, 等. 基于侧倾能量分级的平衡重式叉车防侧翻控制研究[J]. 机械工程学报, 2023, 59(10): 275-289.
[2]  洪晓莉, 尹辉俊, 王祖皓, 等. 基于敏感度分析的叉车门架铰接点的布置优化[J]. 机械设计与制造, 2016(11): 125-128.
[3]  莫易敏, 刘青春, 高烁, 等. 某小型客车侧翻简化模型关键结构优化设计[J]. 机械设计与制造, 2022, 372(2): 265-268, 276.
[4]  Cheema, S. and Sepehri, N. (2002) Computer Aided Stability and Safety Analysis of Forklifts. Proceedings of the 5th Biannual World Automation Congress, Orlando, 9-13 June 2002, 297-302.
[5]  Rebelle, J. (2015) Use of a Modified HYBRID III 50th Dummy to Estimate the Effectiveness of Market Restraint Systems for Forklift Truck Drivers. International Journal of Crashworthiness, 20, 348-369.
https://doi.org/10.1080/13588265.2015.1015362
[6]  Milanowicz, M., Budziszewski, P. and Kędzior, K. (2016). Numerical Modelling of the Forklift Tip-Over to Test Effectiveness of the Safety Components. Proccedings of 11th International Conference Biomdlore 2016, Druskininkai, 20-22 October 2016, 35-38.
https://doi.org/10.3846/biomdlore.2016.09
[7]  康小鹏, 董浩, 祁传琦, 等. 利用车辆状态估计的客车防侧翻控制[J]. 机械设计与制造, 2022, 377(7): 10-13, 18.
[8]  Mobini, F., Ghaffari, A. and Alirezaei, M. (2015) Non-Linear Optimal Control of Articulated-Vehicle Planar Motion Based on Braking Utilizing the State-Dependent Riccati Equation Method. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229, 1774-1787.
https://doi.org/10.1177/0954407015571156
[9]  黄卫红, 路永婕, 王子晨, 等. 基于LTR动态预测的重载车辆防侧翻滑膜控制研究[J]. 石家庄铁道大学学报: 自然科学版, 2021, 34(1): 22-28.
[10]  Mobini, F., Ghaffari, A. and Alirezaei, M. (2015) Non-Linear Optimal Control of Articulated-Vehicle Planar Motion Based on Braking Utilizing the State-Dependent Riccati Equation Method. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229, 1774-1787.
https://doi.org/10.1177/0954407015571156
[11]  Xia, G., Xia, Y., Tang, X., Zhao, L. and Hu, J. (2021) Anti-Rollover Control Based on Stable Zone Partition of Counterbalanced Forklift Trucks. International Journal of Automotive Technology, 22, 1529-1543.
https://doi.org/10.1007/s12239-021-0132-1
[12]  Miège, A.J.P. and Cebon, D. (2005) Active Roll Control of an Experimental Articulated Vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 219, 791-806.
https://doi.org/10.1243/095440705x28385

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133